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Introduction. This paper presents the contents of the like-titled report given on
September 8, 1986, to the First All-World Congress of the Bernoulli Society of Mathe-
matical Statistics and Probability Theory held in Tashkent. Although algorithms and
randomness may appear to be diametrically opposed and even incompatible subjects,
this is only so at first glance. By scrutinizing our ideas on randomness and algorithms
more closely, we are able to observe a connection between them.

However paradoxical this may seem, all of today’s known mathematical definitions
of randomness can be formulated in terms of the theory of algorithms. At the same
time, when algorithms are constructed, randomization can be applied in a fruitful way.
The article therefore concerns two things. The first is the use of algorithms to define
randomness. The second is the use of randomness to develop algorithms.

Comment of the second author. Although the basic contents of the article (and
especially the first two chapters) rest on the ideas and publications of A. N. Kolmogorov
(who was the second author’s immediate teacher), the first author did not have the
opportunity to familiarize himself with the final version of the text. Therefore, the
second author is responsible for any of its possible flaws as well as for the use of the
name Kolmogorov in such expressions as "Kolmogorov suggested, Kolmogorov’s
ideas, Kolmogorov’s theorem," "Kolmogorov stochastic property," and so on. The
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notions and terms "typical sequence" and "chaotic sequence" were approved by
Kolmogorov and the term "stochastic sequence" (as applied to sequences having the
property of frequency stability in admissible subsequences) is due to him.

A great amount of help in the preparation of the Tashkent report was rendered
by R. Freivald and Aleksandr Shen’. It is the authors’ obligation and pleasure to
express our gratitude to them.

1. Algorithmic Definition of Randomness: Infinite Case.
1.1. From finite chains to infinite sequences. If someone were to say to us that he

had flipped a fair coin twenty times and, denoting heads by one and tails by zero, had
obtained a result such as

(I) 10001011101111010000

or such as

(II) 01111011001101110001,

we would hardly be surprised. However if we were told that the result of the flips was

(III) 00000000000000000000

(twenty zeros), then we would be startled or we would in general not trust the properness
of the experiment and we would even have doubts about it. The question arises, why?
An exhaustive clarification would belong, we should think, to the domain ofpsychology
and therefore lies beyond the scope of our presentation.

Apparently, the chains (I) and (II) are perceived to be random while the chain
(III) is regarded as nonrandom. Here and elsewhere we have the Bernoulli distribution
with equally likely outcomes in mind.

But what do the words "perceived to be random" mean? Classical probability
theory does not give an answer to this important question. Quite often one hears the
following explanation: the probability of the chain (III) is too small being equal to
2-2. But the fact is that the chains (I) and (II) have the exact same probability. This
is a trap into which even prominent specialists happen to fall.

A proper answer may be obtained on the basis of algorithmic notions. Let us
repeat the question whose answer we are seeking. Under conditions of a uniform
Bernoulli distribution, consider finite chains of outcomes that are equally likely and
independent--in other words, finite chains of equally likely and independent binary
digits. Can we distinguish random chains from nonrandom ones? Of course, the
question itself is reasonable only for chains that are not too short.

Thus, our main objective is to define the notion of randomness for sufficiently
long finite chains. It proves fairly difficult however to solve this problem directly.
Therefore as so often happens, we shall exchange our stated goal with another one,
but close to our original goal. Namely, we shall seek a definition of randomness for
infinite sequences. Stated otherwise, we shall go from finite chains (I), (II) and (III)
to infinite continuations of them (I...), (II...), and (III...):

(I...) 10001011101111010000...

(II...) 01111011001101110001

(III...) 00000000000000000000

Here (I...) and (II...) are arbitrary infinite binary sequences (formed by flipping a
coin at random) whose beginning segments are the respective chains (I) and (II). And
(III...) is an infinite sequence of zeros.
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One could say that we are considering infinity to be an upper approximation to
the finite. We are counting on finding a solution to our problem (to define randomness)
for the infinite case in order to use it as an approximate solution for the finite case.

It is highly nontrivial that such a solution can indeed be found and that we have
the right to say "random sequence" not only as a euphemism for something having
probability one but also in a perfectly strict sense. In other words, it turns out to be
possible to define randomness for an individually chosen infinite sequence. Thus the
question whether an individually chosen sequence is random or nonrandom becomes
perfectly sensible. By the same token, the set R of all random infinite sequences is not
vague but is clearly delineated. In fact, as we shall see, it is possible to give a precise
definition of the set R in algorithmic terms. This remarkable fact occupies a central
position in algorithmic probability theory.

We introduce the following notation: .. for the set of all binary words (i.e., binary
chains consisting of the digits 0 and 1); Ixl for the length of a chain x .. (not to. be
confused with the notation [A for the cardinality of a set A); and 11 for the set of all
infinite sequences of the digits 0 and 1.

When saying "sequence" we shall have in mind an infinite sequence and when
saying "chain" a finite chain.

Thus we go from a consideration of the set .. to the set 1. On the set 1 there is
defined a uniform Bernoulli distribution or, if convenient, a uniform Bernoulli measure
/. such that/.,(1) 1. We assume that 1-I contains the subset R of all sequences that
are random in some informal reasonable sense. Our immediate aim is to define such
an R in a perfectly precise way. But to this end, we should learn something about
random sequences.

1.2. Three properties of a random sequence. Random sequences possess three
fundamental properties. Each of these may be taken as the basis of a definition of
randomness. We shall first analyze the three properties on an intuitive level and then
give precise formulations.

The first property is that of being typical This property was pointed out by
Martin-L6f. Every random sequence is typical. Thus the sequences (I...) and (II...)
are perceived to be typical whereas the sequence (III...) is perceived on the contrary
to be very special. Practically speaking, the property of being typical is the property
of belonging to any reasonable majority. In choosing some object at random, we have
confidence in the fact that this object will fall precisely in such a majority. In particular,
on choosing a sequence at random, we have the justifiable expectation of obtaining a
typical sequence. Therefore, R c T, where T is the class of all typical sequence in .

The second property is that of being chaotic. This property was pointed out by
Kolmogorov. Each random sequence is chaotic in the sense that it has no simple law
governing the alternation of its terms. For instance, the sequences (I...) and (II...)
are chaotic while the sequence (III...) is not chaotic. Thus, R c C, where C is the
class of all chaotic sequences in ft.

Finally, the third property is embodied in the stability offrequencies. This property
was pointed out by von Mises. The frequency of zeros in the beginning segments of
a random sequence (if the occurrences of 0 and 1 are equally likely) must converge
to 1/2. Moreover, this effect must be observed not only for the entire sequence as a whole
but also for any of its properly chosen subsequences (we underscore the phrase properly
chosen). Let us agree to refer to sequences that possess the designated property as
stochastic sequences. The fact that a sequence is stochastic implies, for example, that
if we should remove every third term of the sequence (or even any term whose position
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in the sequence is a prime number), then the frequency of zeros in the beginning
segments of a subsequence formed in this way will tend to 1/2. The property of being
stochastic is satisfied by (I...) and (II...) but not by (III...). Thus, R c S, where S
is the class of all stochastic sequences in f.

In attributing the notions of being typical, chaotic and stochastic to Martin-L6f,
Kolmogorov, and von Mises, we were not trying to say that these authors used the
terms "typical, chaotic" and "stochastic," Martin-LSf and Kolmogorov used the
word "random" while von Mises used the German word "Kollektiv," The terms
"typical," "chaotic" and "stochastic" were actually used for the first time in the sense
just described in front of the large audience at the Bernoulli Congress in Tashkent on
September 8, 1986.

We proceed now to give precise mathematical definitions of the three properties
of randomness that were just considered "on a philosophical level," i.e., precise
definitions of the classes T, C and S. In many of the technical details, we shall-follow
the presentation in [30], [31]. And we shall assume as before that a uniform Bernoulli
measure z has been defined on f.

1.3. Typical sequences: definition. We intend to give a precise meaning to the
assertion that there are many typical sequences and that each typical sequence belongs
to a reasonable majority. At first glance, it would seem that the mathematical equivalent
of reasonable majority should be the notion of a set of measure 1. Then the class T
of all typical sequences should be taken to be the intersection of all subsets of l-I having
measure 1. Unfortunately, such an intersection is empty. Our more precise definition
of reasonable majority has turned out to be improper. A certain natural algorithmic
analogue of the notion of a set of measure 1 will serve as a more precise proper
definition. The formulation of such an analogue is due to Martin-L/Sf [8].

Thus following [8], we shall modify the very definition of a set of measure in
an algorithmic direction. Since each set of measure 1 is the complement of a suitable
set of measure 0, it suffices to state the notion of a set of measure 0 in algorithmic
terms. This we now proceed to do.

Each finite chain x generates a ball Fx c l-I consisting of all of the possible
infinite continuations of x so that/x(Fx) 2-Ixl. It is well known that a set M c f has
measure 0 or is negligible if and only if to each positive rational number e there is a
sequence of chains Xo, xl, , Xk E, k 0, 1, , such that the corresponding
sequence of balls satisfies the conditions

(i) U r D M,
(ii) Y z(Fk) < e.
We now confine ourselves to just computable sequences of chains. A sequence

Xo, xl,. is said to be computable if there exists an algorithm for computing Xk when
k is specified. For a given sequence, many such algorithms are possible and each of
these algorithms, in turn, may be realized through different programs offering their
own texts. Taking (xk) to be an arbitrary fixed computable sequence, we shall refer to
any program of any algorithm computing xk with respect to k as the program of the
sequence

Suppose that there is an algorithm which provides a program for a computable
sequence (Xk) satisfying conditions (i) and (ii) for any positive rational number e. In
that event, we shall say that the set M effectively has measure 0 or has effective measure
0 or is effectively negligible and we shall write/x(M) = O. We then declare that a set
A effectively has measure 1 or has effective measure 1, which will be written/z(A) =n 1,
whenever the complement of A has effective measure O, i.e.,/z(12\A) = O.
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And now in our first--and unsuccessfulmattempt to define T, it is necessary to
replace measure 1 by effective measure 1. That this will be successful is assured by
Martin-L/Sf’s celebrated theorem of 1966 which was formulated initially in [9, p. 610]
in terms of so-called universal tests (a formulation in terms of measure may be found
in [14, 35]). Martin-L/Sf’s theorem says: the intersection ofall sets of effective measure
1 is not only nonempty but it also has effective measure 1. Thus, this intersection is the
smallest set of effective measure 1. It is called the constructive support of the measure
[9, p. 614]. We now proclaim this set to be the class T of all typical sequences.

Terminological comment. Sequences belonging to the constructive support of a
measure are often referred to as Martin-L6frandom sequences; see, for example, [30],
[31].

The property of being typical is encountered in many theorems of probability
theory. In fact, take any theorem stating that some property, say the law of the iterated
logarithm, is satisfied by "almost all infinite sequences". The exact meaning of the
phrase in quotation marks is that the set of all sequences for which the property in
question holds has measure 1. An analysis of the proof of any such theorem shows
that the set of all sequences possessing the property not only has measure 1 but it also
has this measure effectively. Consequently, every typical sequence possesses the con-
sidered property. In particular, the law of the iterated logarithm holds for an arbitrary
typical sequence. (Similar considerations caused Martin-L6f to identify randomness
with being typical [8], i.e., to declare that R T. This was the first mathematically
precise and simultaneously adequate definition of randomness.)

1.4. Chaotic sequences: equivalent definitions. Being chaotic signifies a complexity
of structure. Let K be a measure of the complexity of finite binary chains so that for
any y e E the value of K (y) is a natural number. Thus, K" E- N. What K represents
exactly will be determined subsequently. At this point, the general notion that the
natural number K(y) reflects some informal idea of the complexity of a binary chain
is sufficient for us. Then the fact that a sequence is chaotic ao, a,. signifies that
the complexity of its beginning segments K (ao), K (ao, a), grows sufficiently fast.

It is reasonable to interpret the phrase "sufficiently fast" in the sense of "the
fastest possible rate." However, it is possible to specify each binary chain of length n
by using up at most n bits of information. Therefore, in any natural measure of
complexity, the complexity of an n-term binary chain cannot be of order greater than
n. These remarks justify the following formula as a mathematical expression of the
fact that the complexity of the beginning segments of a sequence ao, a,.., grow at
the fastest possible rate:

K (ao, al," ", a,,-1) >- n c

for all n and some constant c not depending on n but depending on the entire sequence
(a) (cf. [34, 6]). It remains to clarify what such a K is.

We start out with the following simple considerations. There are objects y and
descriptions of them encoded in the form of binary chains belonging to ... Each object
has many descriptions in general. If among these descriptions there is at least one
short one, then the object under consideration is simple. But if all descriptions of this
object are long, then this object is complex. Thus, complexity of an object is nothing
more than the length of its shortest description.

However a straightforward development of these simple and natural ideas meets
up with serious difficulties associated with the familiar Richard-Berry paradox. The
gist of this paradox is manifested in the expression "the smallest natural number that
cannot be described using fewer than fifty words"mbut this expression contains less
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than fifty words and as such it does describe some natural number. Therefore, one has
to be careful.

Thus, let Y be a fixed set of objects. Their descriptions belong to . Each object
may have many descriptions and each description can be the description of many
objects. Thus, in the general case we have a set E consisting of all possible pairs (x, y)
in which x is a description of y. This E is a subset of the cartesian product x Y and
is said to be a process describing elements of Y by means of chains in E. It is meaningful
to interpret an arbitrary set E x Y as a process describing elements in Y by means
of chains in ,. Whenever E is a descriptive process and (x, y) E, we shall call x a
description of the object y by or relative to the process E.

The complexity KE(y) of an object y relative to a descriptive process E is by
definition the smallest length of the description of this y by E, i.e.,

KE(y) =min (Ixl I<x, Y) E).
As is usual in such cases, if y has no description at all in E, then we put Kts(y)-

Let Y be fixed and let 9 be a family of processes describing the objects in Y. For
certain important families 92 associated with algorithms, we have Kolmogorov’s
theorem of 1965: 9 contains an optimum descriptive process which in a certain sense
furnishes the shortest possible descriptions. More precisely [7]: there exists an A
such that, for every E 9,

KA(y)<=K(y)+c
with c a constant not depending on y.

The complexity of an object y relative to an optimum descriptive process is defined
to be the entropy of y. (One should not forget that we have a fixed specific family 9.)
Any two entropies (corresponding to two optimum descriptive processes) can differ
at most by an additive constant. More precisely, if A’ and A" are two optimum
descriptive processes, then IKA,(y)- KA"(Y)I <- C, where c is independent of y. Therefore,
it is possible to say simply "the entropy of object y" without indicating a specific
optimum descriptive process. We then understand that the entropy is determined to
within at least an additive constant.

The entropy of an object y is usually denoted by K (y).
Starting from here, we shall confine ourselves to the case where the set of objects

being considered--our previous Y--is E. For this case, we now declare a binary
sequence ao, al," to be by definition chaotic if and only if

K (ao, a,..., an_i) >= 11 C
for some constant c and all n, where K is the entropy. This definition depends of
course on

It remains to choose a suitable family 9A. In order to accomplish this, we shall
describe a certain which leads to the concept of" entropy introduced by Levin in
1973 [16]. This entropy was called monotone complexity by the author. We shall call
it monotone entropy.

We shall say that a descriptive process E preserves comparability whenever it
possesses the following property:

(Xl, y)e E & (x2, Y2) E
& (x2 is a continuation of x)
=:> (y2 is a continuation of Yl)
or (y is a continuation of ya).

We shall confine ourselves to countable descriptive processes. It is precisely here
that algorithms will make their appearance because a nonempty set is by definition
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countable if it is in the range of values of a computable sequence. We take to be
the family of all descriptive processes that simultaneously preserve comparability and
are countable. The entropy L corresponding to such a family A is called monotone

entropy. It has to be used when defining the property of being chaotic. We now proceed
to give the definitive definition of the class C of all chaotic sequences: by definition,

(ao, a...) C

if and only if, for all n,

L(ao, al," a,_l)--> n-c,

where c is independent of n.
Remark 1. An equivalent definition of monotone entropy was suggested by

Schnorr in 1977 [22, 4]. (A transparent proof of the fact that Levin’s formulation
and Schnorr’s formulation lead to the exact same entropy may be found in [29, pp.
34-35]. We point out that applied to any two entropies K and K2, the phrase "the
same" has the following meaning: IKl(y)-K2(y)I <--c for some c not depending on
y.) Earlier, in 1973, Schnorr [17] had proposed another notion of entropy (which he
subsequently discarded), which he called process complexity. Process complexity leads
to the same class C (as does monotone entropy); this is a trivial consequence of the
theorems of Levin and Schnorr, which we shall discuss in 1.5. However, process
complexity does not coincide with monotone entropy even up to an additive constant;
the difference of these two entropies is unbounded (as V’yugin showed [29, p. 35]).

Remark 2. The concept of entropy as a measure of the complexity of a finite
object can be formulated in another way without using the "object-description"
relationship. We are thinking here first of all of the approach relying on various versions
of the so-called a priori probability of a binary chain. One such version is given in
[15, 3.3]. In [16, Theorem 3], it was established that the entropy that comes up on
the basis of this version leads to the same class C (as does monotone entropy). Another
version of a priori probability will be discussed below in 4.1. This version also leads
to the very same class C.

Remark 3. It would be false to assume however that any conceivable (or even
any reasonable) measure of complexity of a binary chain is fit to define the class C
with the help of an inequality such as K (ao, , a,_) _-> n c. For instance, as a quite
natural measure of complexity of a chain y one could take the value of H(y 1) or
of n(yllyl), where G(y[x) is the conditional entropy described in 2.2 below, is
the empty chain and lY[ is the length of a chain y. But then there will be the following
effect: whatever the sequence ao, a,.., in 1) may be, neither the difference n-
H(ao,’’’,an-l) nor the difference n-H(ao,..’,an_lln) is bounded. The
unboundedness of the second difference is an easy consequence of the unboundedness
of the first. And the unboundedness of the first difference was revealed by Martin-L6f
[8] (a proof may be found, for example, in [13, Thm. 2.2]).

A useful comparative presentation of the various versions of entropy has been
published by V’yugin [29].

Terminological comment. The sequences belonging to the class C defined in this
section are referred to as Kolmogorov random sequences in the review articles [30], [31].

1.5. Random sequences: definition. Thus, we have two classes of binary sequences
(both of them now being defined precisely): the class T of typical sequences and the
class C of chaotic sequences. In [16], Levin established that C coincides with T.
Schnorr also proved this coincidence in [17]. Each of them started from his own
definition of C, which results, respectively, from Levin’s monotone entropy or Schnorr’s
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process complexity. Thus, there are actually two different theorems. Nevertheless, we
find it natural to refer to the assertion that the classes T and C coincide as the
Levin-Schnorr theorem.

It was already mentioned in 1.3 that each typical sequence obeys the law of the
iterated logarithm, and to prove this, it suffices to repeat the standard proof of the
theorem on the law of the iterated logarithm. Thus, every typical sequence obeys this
law. It is noteworthy that this last fact can be proved-directly. Such a proof was devised
by Vovk [41]. In other words, he created a proof of the theorem on the law of the
iterated logarithm by means of algorithmic entropy. One gets the impression that this
proof penetrates the essence of randomness more deeply than the standard textbook
proofs. Thus the approach being developed permits one not only to translate traditional
probability-theoretic facts into the language of algorithmic concepts, on the contrary,
these concepts can be of use in perfectly classical parts of probability theory.

The Levin-Schnorr theorem, which says that the classes T and C coincide,
furnishes valid grounds for proclaiming C or T to be the class of all genuinely random
sequences. Thus, we can identify our earlier slightly vague R with this class T--C.
Henceforth the class R will be treated as being defined rigorously.

1.6. Stochastic sequences: attempts at a definition. One says that a binary sequence
ao, al, a2," possesses the property offrequency stability with limit p if lim (,/n) p,
n c, where ’n is the number of zeros in a beginning segment ao, al,..., an_ of
length n. To simplify the presentation in what follows, we shall treat just the case p =
and hence the phrase "with limit p" will be omitted.

By definition, a binary sequence is stochastic whenever any suitably chosen
subsequence of it has frequency stability. The main thing here is to define the phrase
"suitably chosen".

We assume that each subsequence is formed from the original sequence by making
a selection of its terms. It is therefore assumed that a certain rule exists which
accomplishes this selection and extracts certain terms of the original sequence
aa, a,.. so as to form from them a subsequence aro, ar,. .. If the selection rule
is admissible, then a subsequence (at,) formed in this way will have the property of
frequency stability.

The notion of admissible selection rule should not depend of course on the
particular sequence to which the selection rule is applied; it should be the same for
all conceivable sequences. It is thus assumed that there is a family of admissible
selection rules. A sequence is said to be stochastic (relative to the given family!) if
each infinite subsequence of it constructed with the help of one of the admissible
selection rules possesses frequency stability.

But what selection rules are admissible ? Here is a trivial example of an inadmissible
selection rule" extract exactly those terms of an original sequence that are zero. This
rule is inadmissible because the decision as to whether or not to pick out the term as
of the sequence ao, a, should depend of course just on the earlier observed values
and not on the value of as itself.

The above well-known approach to randomness goes back to the classical papers
of von Mises of the first third of the century [1], [2]. But von Mises did not give and
could not give a precise definition of an admissible selection rule. Indeed, such a
definition requires algorithmic ideas.

The first attempt to present a precise definition of admissible selection rule dates
back to 1940 and is due to Church, one of the founders of the modern theory of
computability [3]. He required the existence of an algorithm that could determine
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whether or not to select the term as depending on the values of the preceding terms
ao, al," ", as-1 of a considered sequence. Thus the domain of this algorithm is the
set of all finite binary chains and the range is the two-element set {Yes, No}. The
algorithm operates as follows. Let the sequence being considered be ao, al," and
suppose that its beginning segment a0, al," ", as-1 has been admitted as the input to
the algorithm. Then if "Yes" results at the output, the term as must be chosen for
inclusion in the subsequence being generated; but if "No" is the output, then as is
passed over. The computable function " .. {Yes, No}, defined by this algorithm, is
uniquely determined by the set {xl(x)="Yes"}. Therefore, in order to specify a
Church admissible selection rule, it suffices to designate some decidable set D c .. and
then to put (x)="Yes" if x D and (x)="No" if x ..\D. (It will be recalled
that in algorithmic theory a subset D c X is said to be decidable whenever there exists
an algorithm which answers the question: "x D?" for each x X.)

It is essential that any new sequence avo, av,, formed from ao, al, by means
of some Church admissible rule be a strict subsequence of ao, al,’". The word
"strict" means that the terms of the subsequence should proceed one after the other
in the same order as in the "larger sequence," i.e.,

(1) y0< 3’1< 2’2<’".

The notion of a Church admissible selection rule gives rise in a natural way to
the notion of a Church stochastic sequence. By definition, a sequence is Church
stochastic if and only if to each Church admissible selection rule, the subsequence
formed from the original one by applying this rule possesses the property of frequency
stability providing it is infinite.

Unfortunately, the class CS of Church stochastic sequences turns out to be too
wide. In particular, it is possible for a sequence to be Church stochastic yet not satisfy
the law of the iterated logarithm (see, for example, [13]). Thus R CS (although of
course R CS).

The preceding discussion shows the necessity of creating a new and more general
definition of an admissible selection rule. Such a definition was proposed by Kol-
mogorov in 1963 in Remark 2 of the article [5]. We shall present this definition in the
words of the report [35] (keep in mind that the original sequence to which the rule is
applied is Xl, x2," ")"

"According to [5], a selection rule is specified by means of an algorithm (or if
convenient by means of a Turing machine). The choice of the next term in the
subsequence is accomplished in this way. The input information consists of a finite
set of numbers/11,/’/2, nk and terms x,,, xn2, , xnk of the original sequence. The
output of the algorithm is composed of two parts: first, the number nk+l of the next
term subject to investigation (this number must not be the same as any ofthe nl, , nk;

as to the order in which the nl,’", nk proceed, no restrictions are imposed here);
second, designating whether x,k+ is selected just for investigation or else the algorithm
is to include this term in the subsequence.

"At the next step of operation of the algorithm, its input now consists of a larger
collection of numbers nl,’", nk+l and the values x,,1,x,,2,...,x,,+. The algorithm
begins its operation with the empty set.

"As compared to [3], our extension consists in the fact that the order of succession
of the terms in the subsequence chosen is not necessarily the same as their order in
the original sequence."

Thus the main feature of Kolmogorov’s definition is that the requirement (1) has
been discarded and the terms of the sequence are allowed to proceed in a new order.
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A more explicit formulation of Kolmogorov’s definition will be given below. This
definition of a Kolmogorov admissible selection rule leads to a narrower class KS of
Kolmogorov stochastic sequences such that

R c KS c:_ CS, KS CS.

It is easy to see that any sequence obtained from a Kolmogorov stochastic sequence
by a computable permutation of its terms is itself a Kolmogorov stochastic sequence.
Church stochastic sequences do not have this important property of randomness"
Loveland constructed an example of a Church stochastic sequence in 10] which ceases
to be Church stochastic after a certain computable permutation of its terms, which
shows in particular that KS CS.

We do not have an example available violating any of the laws of probability
theory by any Kolmogorov stochastic sequence. Nevertheless, it is still unknown
whether KS coincides with R. It is not even known whether any subsequence formed
by applying a Kolmogorov admissible rule to a Kolmogorov stochastic sequence is
itself a Kolmogorov stochastic. (Each notion of admissible selection rule leads to a
corresponding notion of being stochastic. It is reasonable to require that each sequence
which is obtained from a stochastic sequence by means of an admissible selection rule
be itself stochastic. Church’s definition satisfies this requirement. As was just mentioned,
the question as to whether Kolmogorov’s definition satisfies this requirement remains
an open one.)

Moreover, it has been hypothesized that KS R. This hypothesis seems all the
more plausible in that the inequality KS R follows from an assertion made by
Kolmogorov in 1969; however the proof of that assertion has been lost. Thus the
question "Is KS R true or false?" must be regarded as an open one. (The assertion
that we are discussing is contained in the concluding paragraphs of Section 2 of [12].
It says that there exists a Kolmogorov stochastic sequence x satisfying H(xt) O(log l).
Here x is the beginning segment of length of the sequence x and H(w)= H(wlf),
where H(wlu) will be defined below in 2.2 and is the empty chain.)

We now formulate Kolmogorov’s notion of selection rule (and thereby the notion
..,f being Kolmogorov stochastic) in a clearer form.

A Kolmogorov admissible selection rule is specified by two computable functions

f and g from .. to N. It is not assumed that these functions are necessarily defined
on all of ... To apply the rule to a sequence ao, a, a(0), a(1),.., we first
construct a sequence of numbers k using the recursion formula

k(n) =f(a(k(O)), a(k(1)), , a(k(n- 1))),
which we apply until all the numbers k(0), k(1),..., k(n) are defined and distinct
from one another. As soon as a first n arises such that k(n) is either undefined or
coincides with k(s) for some s < n (providing such an n exists at all), the formation
of the sequence k is terminated; in that event, k is a finite chain of length n. We are
interested however only in the case where k is an infinite sequence. At the next step,
certain terms of the sequence k must be removed while the order of succession of
remaining terms remains unchanged. Namely, we leave the term k(m) in the sequence
if and only if g(a(k(O)),...,a(k(l-1))) is defined for all l<=m and
g(a(k(0)), , a(k(m-1)))=0. The sequence k’ obtained in this way is by definition
the result of applying the Kolmogorov admissible selection rule Ky,,g to the sequence
ao, a, a(0), a(1),- ...

A sequence a ao, a,.., is called Kolmogorov stochastic whenever for any
computable functions f and g for which the sequence b formed from a by applying
the rule Ky,g is infinite, this b possesses frequency stability.
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As already stated, this definition appeared for the first time in Kolmogorov’s
article of 1963 [5, Remark 2]. In 1966, it was rediscovered by Loveland [11]. Some
useful observations were made by Shen’ in [32].

Terminological comment. The review articles [30] and [31] refer to Church stochas-
tic sequences as "Mises-Church random sequences" and to Kolmogorov stochastic
sequences as "Mises-Kolmogorov-Loveland random sequences."

If the hypothesis KS R is valid, then the following problem arises. Does there
exist a "good" definition of admissible selection rule for which the class of stochastic
sequences (corresponding to this definition) coincides with R ? The word "good" means
that the notion to be defined should be sufficiently general while remaining reasonable.
(A step in the direction of discovering such a notion was made by Shen’ in [32]. Some
natural requirements that such a notion must satisfy were discussed above in this
section.) From a philosophical standpoint, the question amounts to whether von Mises’
ideas can be reduced to a proper conception of randomness.

1.7. Computable distributions and other generalizations. Until now, we have spoken
only about uniform Bernoulli distributions. Mutatis mutandis, our considerations can
be generalized: for stochastic sequences--to an arbitrary Bernoulli distribution on
(with probability of occurrence of zero not necessarily equal to 1/2); for typical and
chaotic sequencesmto arbitrary probability distributions on f.

A measure/z on f (in particular, a probability distribution) is said to be computable
if there exists a computable function h such that, for each x .. and each positive
rational number e, its value h(x, e) is a rational e-approximation to the real number

h(x, e)Q&lh(x )-(rx)l < .
In particular, any Bernoulli distribution with a computable real p as the probability
of zero is a special case of a computable distribution. (In fact, a number p is said to
be computable whenever there exists a computable function furnishing a rational
e-approximation to p for each positive rational e.)

If/z is any computable distribution on 1, then it is possible to construct the
classes T and C and to prove that T C. The class T is defined as before to be the
constructive support of the measure, i.e., the smallest subset of f having effective
measure 1. In order to define the class C, we have to replace the inequality
K(ao, al," an-l)>= n-c of 1.4 by the inequality

K(ao, a,..., an_l) >-- Iog2/z(Fo,,...,,_,)- c.

We now have at our disposal the definition of randomness for the case of an
arbitrary computable distribution /x on f" a binary sequence is said to be random
relative to tx whenever it belongs to the class T-C, where T and C have been
determined for this

It is possible to consider the conditional probability 7r(x; P), P any distribution
on f, that an arbitrary unspecified sequence too, to,. will have a one occurring
after a specified beginning segment x

7r(x; P)= a(to,+l lltoo, tO ,’’" (.O X)-- P(r.,)
P(rx)

of course, the value of 7r(x; P) will depend essentially on P so that the difference of
7r(x; P’) and 7r(x; P") for two distributions P’ and P" may be appreciable. This
difference proves to be small if P’ and P" are both computable and x is the length of
the beginning segment of a pre-assigned sequence which is random relative to P’ and
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P" simultaneously. This fact was revealed by Vovk [37]. Here is a precise statement
of Vovk’s theorem: Let P’ and P" be arbitrary computable distributions on f and let
ao, a1," be a random sequence relative to P’ and P" simultaneously. Then

r(ao, al, a,; P’)-Tr(ao, al, a,,; P")->O
as n--> o. Thus r(x; P’) and r(x; P") are close to one another whenever the chain
x ao, al, , a. is long and we are entitled to speak about the conditional probability
of occurrence of a one after a specified beginning segment of zeros and onesthe
entire sequence viewed as a whole is random relative to some distribution (unknown
to us!).

Until now, we have spoken only about the randomness of binary sequences.
However the above algorithmic approach can be applied also to more general situations.
For example, Asarin [38], [39] developed a definition of typical sequences in the style
of Martin-L6f as it applies to Wiener random processes and gave a definition-of a
typical trajectory for a Brownian motion. He also suggested a definition of a chaotic
trajectory in terms of entropy in the style of Kolmogorov and he proved that both
definitions actually determine the same class of trajectories.

2. Algorithmic Definition of Randomness: Finite Case.
2.1. Introduction. It seems natural to call a chain random if it cannot be written

down in a more condensed form, i.e., if the shortest program for generating it is as
long as the chain itself. But in order to embody this in a strict mathematical definition,
we have to expend a little effort.

The question "what chains of zeros and ones of length n are random?" is clearly
irrelevant for n 2 and is meaningful only for n sufficiently large. Moreover, even for
very large n, there is no clearcut boundary between random and nonrandom chains
of length n. In fact, if we take a "random" chain of very large length n and replace
successively the ones by zeros digit after digit, then we arrive in the final analysis at
a "nonrandom" chain of the same length of only zeros. But at no stage of the process
does the incipient formation of a "nonrandom" chain out of a "random" one manifest
itself. (This is one of the manifestations of the pile paradox.)

Thus in contrast to the infinite case, we cannot split the set of all chains of length
n into a subset of all "random" chains and a subset of all "nonrandom" chains. The
correct question is not "Is a given chain random?" but rather "By how much is a given
chain random?". It is expedient to define also the degree of randomness of a finite
chain not in an absolute sense but relative to some finite set M containing the chain.
(For comparison sake, it may be observed that randomness in an infinite chain was
defined in the previous chapter relative to all of f with a Bernoulli distribution defined
on f.)

These considerations led the first author to introduce the notion of "defect of
randomness of an element y relative to a finite set M assuming that y M". The larger
is this defect, the less random is y as an element of M. As a function of y and M,
defect of randomness is determined only up to at most an additive constant. The role
of M here is similar to the role of the probability distribution on in the infinite case.
It is right to say that the defect of y relative to M is the defect of y relative to the
uniform distribution on M, where all the elements of M are regarded as equally likely
with probability 1/[M ([M is the cardinality of M).

2.2. Conditional complexity and conditional entropy. In this section, some sub-
sidiary notions will be explained. We shall need the notions of conditional complexity
and conditional entropy of an object given that an object x has already been specified
or is known 12]. If we resort to informal language, then conditional complexity is the
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length of the shortest description of an algorithm that transforms x into y (under the
assumption that some method of describing algorithms has been given). But if we talk
rigorously, then conditional complexity ofy given x is the length of the shortest program
of a computable function whose value at x equals y:

H,(ylx) min (IPl [(x) y).
Here x, y, p E, fp is a computable function with program p, p[ is the length of p and
F is subject to clarification.

The notation fp(X) indicates that we actually have a function of two variables p
and x:

F(p,x)-(x)
(the symbol between two expressions means that the values of both expressions are
simultaneously defined or undefined and if defined they coincide). The function F is
computable and can be treated as a programming method. Thus, the definition given
above rests on the method F and this fact is expressed by means of the subscript F:
the expression Hv(y[x) is the conditional complexity of an object y relative to the
method F given that x is known.

Among the programming methods there are the so-called optimum methods. A
programming method is said to be optimum if, for any other method F,

H.(ylx) <- Hv(y[x) + cv,

where cv is a constant not depending on either x or y.
If is an optimum method, then H.(ylx) is called the conditional entropy of the

object y given x. When speaking about entropy, we may omit the subscript 1, since
the entropies corresponding to any two optimum 1, differ by at most an additive
constant. Thus we can simply write H(ylx) for the conditional entropy of y given x.
This conditional entropy estimates the length of the shortest description of object y
that can be achieved with the help of x.

The preceding developments are sufficiently clear if x and y are binary chains.
We shall need to handle situations however in which x and y are both finite sets of
such chains. For that purpose, it is necessary to secure some natural way of coding
finite sets of chains by means of binary chains and then to replace the considered set
by its code. (Various reasonable ways of doing the coding lead to definitions that differ
by at most an additive constant.)

2.3. The defect of randomness. We are finally ready to define defect of randomness
(or perhaps it is better to say: defect of being chaotic). Let M be an arbitrary set of
finite binary chains and let y be an element of M. Then the defect of randomness of
an element y relative to M is by definition

d(ylM) log2 IM[ H(ylM),
where [M is the cardinality of M.

We now make some comments apropos of this formula. Suppose that M has been
specified. Then each y M can be identified uniquely by its serial number in the
lexicographic ordering of M. In order to label this serial number and thereby the
element y itself, it suffices to expand at most log MI digits. The logarithmic term in
the defect formula is just the standard description of y by means of M. As for the
computable H(ylM), it is by definition (see 2.2) the length of the shortest program
of the algorithm transforming M into y (and moreover for the best programming
method!). Any such program may be interpreted as some description of y that makes
use of M. We see that the defect of randomness d(ylM) estimates the difference in
length between two descriptions of y by means of the set Mbetween the standard
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and shortest descriptions. This explanation shows in particular that

H(ylM) <-log= IMI / c

and so the defect of randomness is "almost positive":

d(ylM) >- -c

for some positive constant c not depending on M and y.
When d(ylM) is large, this means that there is a description of the element y with

the help of M which is considerably shorter than the description mentioned above by
means of a serial number. In that event, it is reasonable to treat y as an element of a
very special form and so it is not random.

We point out that there are comparatively few elements with a large defect of
randomness:

I{yld(ylM) >- k}] _-< IMI/2-,
since the number of all descriptions of length at most does not exceed 21/1.

Those elements y in M that have a sufficiently small defect of randomness d (y[M)
are declared to be sufficiently random elements of M.

2.4. a-randomness. Let A be some number. It is expedient to introduce the notion
of A-randomness of an element y relative to M. We shall say that y e M is A-random
relative to M if d(ylM)=< A. Then sufficiently random elements of a set M can be
defined to be those that are A-random for A sufficiently small. Precisely such a definition
was given in [35].

If M is taken to be the set of all binary chains of fixed length n, then A-randomness
of a chain y will mean that n- H(yIM)<--A. Thus, in this important case, those chains
whose conditional entropy (i.e., "shortest descriptive length") is close to their length
can be treated as random chains.

The definition of randomness just formulated can be labeled a definition in terms
of being chaotic. What we have actually just defined are chaotic chains (more precisely,
A-chaotic elements of a specified finite set of chains).

As in the infinite case, it turns out to be possible to prove that chaotic objects
have the properties of being typical and stochastic.

In fact, chaotic elements of a finite set of chains M are typical in the following
sense: no chaotic element in M can belong to any subset S ofM which is simultaneously
pure (which means H(S[M) is small) and not large (which means that IMI/IS[ is
large). A precise statement is that if y S c M and [vl -< n for all v M, then

[MI-H(SIM)<=d(ylM)+ R. R,,= O(log n)log2-(in this Ivl designates length and IMI and ISI cardinalities). The relation R, O(log2 n)
shows that the theorem is of an asymptotic nature. This feature is intrinsic to all
theorems concerning randomness of finite objects. These theorems hold on the assump-
tion that the chains are sufficiently long, the sets are sufficiently pure (i.e., they possess
sufficiently small conditional entropies) and so forth.

We now proceed to stochastic chains. First of all, we agree to use the word
"subchain" to mean any chain obtained from an original chain by the removal of some
of its terms andfor the case of a nonrigorous subchain (decidable by the Kolmogorov
selection rule)a subsequent permutation of the remaining terms.

Bearing in mind the essentially asymptotic nature of all of our considerations, we
are justified in speaking in an approximate sense about frequency stability in a finite
chainon the assumption that the chain is sufficiently long. (Similar considerations
are valid for all of the current discussions.) Thus it turns out to be possible to speak
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about a finite chain being stochastic. Admissible selection rules were indicated for this
case in [5]. They are, mutatis mutandi, rules of the same Kolmogorov type as in the
infinite case (see 1.6) and are chronologically prototypes of the latter ones. But in
the finite case it is further important that a selection rule should itself be sufficiently
simple. The last requirement is satisfied in particular in situations where there is a
sequence of chains of unboundedly increasing lengths and the selection rule is common
to all of these chains. Simplicity of a selection rule E means that when E is treated
as a finite object its conditional entropy H(EIf is small. Here denotes a finite set
or, according to [12], any "automatically assigned object".

As we have seen in the infinite case, the phenomenon of chaotic objects being
stochastic is observed only for special distributions, namely, for Bernoulli distributions.
A similar situation also prevails in the finite case. A chaotic chain and its admissible
subchains actually possess the property of frequency stability but only if a considered
chain is chaotic relative to some special set (containing this chain). An investigation
of this topic was begun in [5]. (In that article, the author again expressed "the point
of view that the basis for the applicability of the mathematical theory of probability
to random phenomena of the real world is the frequency approach to probability in
some form or another, an approach that von Mises championed vigorously as being
inevitable".)

If a chain is chaotic relative to a suitable set, then it is stochastic in the following
sense: not only does the chain possess the property of frequency stability but so does
any of its admissible subchains. This feature of a chain being stochastic can be
formulated as follows: the frequencies ofzeros in all sufficiently long subchains obtained
by means of admissible selection rules are close to one another.

Take for example the set of all binary sequences of length n. If a chain is A-random
and A is sufficiently small, then as mentioned in [35], "when a subsequence is selected,
the property of frequency stability will be satisfied". Consider the further example of
the set of all binary sequences containing rn zeros and n ones. Apply the Kolmogorov
selection rule to a sufficiently chaotic element of this set. If a resulting subchain is not
too short, then the frequency of zeros in this subchain is close to the frequency of
zeros in the entire chain. Our last remark pertains to finite chains of rational numbers
with an arithmetic mean close to zero and a standard (i.e., mean square) deviation
close to one. We specify three parameters: (1) the length of the chain; (2) the
denominator of its terms; and (3) a majorant of the absolute value of its arithmetic
mean and the absolute value of the difference between 1 and the standard deviation.
Consider the set of all finite chains determined by these three parameters and along
with them a chaotic chain in this set (i.e., A-random for A small). If the parameters
are connected by some inequality, then the values of the terms of the chain have a
frequency distribution close to the normal distribution. Precise formulations and
detailed proofs of the facts presented in this section relating to the property of chaotic
finite (binary or rational) chains being stochastic have been developed by Asarin [40].

2.5. Absolutely nonrandom objects. Of course we do not exclude the possibility
of a chain y having a small defect of randomness and hence being random relative to
one set of chains and at the same time having a large defect of randomness and hence
being nonrandom relative to another set. The following natural question arises: "Do
there exist absolutely nonrandom objects," i.e., objects having a large defect of random-
ness with respect to any simple set? The answer to this question posed by Kolmogorov

The dependency of the defect of randomness of a finite chain on a probability measure is investigated
in [42].
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was obtained by Shen’. The answer turned out to be positive: such objects exist. Here
is the precise statement: let a and b be arbitrary constants; to every n sufficiently large,
there is a binary chain y, such that d(y,,IA)>= b log2 n for any set A whatsoever
containing yn for which H(A])_-< a log2 n. This formulation is a simple consequence
of Theorem 2 in [33].

We now make some comments about what has been discussed. A statistician may
have the following sort of problem: to demonstrate that an experimental result is
typical. This means that he has to propose a statistical hypothesis, or in other words,
include the experimental result in a set of possible outcomes in which the actually
obtained result will appear to be typical. Speaking in mathematical terms, the statistician
having obtained a result y must find a simple set A that contains y as a typical element.
Thus, the theorem of Shen’ shows that there are outcomes for which no simple statistical
model of the kind described is possible. The question of course remains whether such
objects exist in the real world.

3. Randomized Algorithms: General Survey.
3.1. Introductory remarks and examples. Section 3 opens the second part of our

article devoted to the utilization of randomness in algorithms. Any algorithm that
involves a random selection at certain of its steps is customarily called a probabilistic
or randomized algorithm.

The use of such algorithms actually conforms fully to statistical tradition. Suppose
that it is necessary to determine the arithmetic mean of a very large number of quantities.
A deterministic algorithm directs us to add all these quantities and then to divide the
sum by the number of terms. A randomized algorithm selects several specimens at
random from among the quantities and then operates only with these specimens, which
assures an obvious economy in the length of computations. In many important cases,
the random result obtained in this way turns out to be close to the true answer with
a high probability.

Another well-known example is the Monte Carlo method which has had a forty-
year history (since its creation by yon Neumann and Ulam).

All of the mentioned algorithms however yield a result which not only can be
inexact but is inexact by its very nature since it only pretends to serve as an approxima-
tion to the correct answer, although with a small error and a large probability.

But approximate computations lie beyond the framework of this article. The
authors have confined themselves to algorithms that deal only with discrete quantities
(it is precisely such algorithms that are studied in the discipline called "theory of
algorithms"). The arguments and values of such algorithms may always be regarded
as finit,; chains of letters or, if convenient, words in a suitable alphabet.

Sometimes a probabilistic approach is used to estimate the quality of an algorithm.
Our life would turn into a nightmare faster than anything if we did not disregard small
probabilities of errors in our practical daily algorithms. In such practical daily
algorithms, we are inclined simply to ignore those theoretically possible cases of a
problem solvable by us which are rare (and occasionally even those which are disagree-
able to us).

Such an approach is customary in the computational sciences. For example, a
sorting algorithm (probabilistic or deterministic, it is all the same) is usually acknowl-
edged to be good if it yields a correct answer in a reasonable time for the overwhelming
majority of the input. But in order to justify such an approach, we must know something
about the probability distribution of the input. In the case of a sorting algorithm, it is
usually assumed that all of the n! permutations of the n objects being sorted are equally
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likely. However such assumptions may prove to be unjustified. It may happen that
"difficult" cases permeate the input more often than others in a sorting algorithm.

We shall consider here just the algorithms that lead for any input to a correct
answer with a high probability and sufficiently fast. Declaring sorting, search and other
important algorithms to be beyond the scope of this article, we are going to concentrate
our attention on the following situations.

We wish to evaluate a function q and compare the performances of deterministic
and probabilistic algorithms evaluating it. For the sake of simplifying the presentation,
we shall confine ourselves to the case where q assumes only two values: 0 and 1 or
"Yes" and "No". Every such function is called a predicate. A predicate p distinguishes
those x for which q(x)- 1 from those for which q(x)= 0. One says that p recognizes
the set {x[q(x)= 1} to be a subset of the domain of definition of p.

A basic questic.n is whether there is a probabilistic algorithm that evaluates q at
a faster rate than any deterministic algorithm. In this connection, it is necessary to
distinguish whether it is being compared with all conceivable algorithms or just with
the known or published algorithms. If, for example, we are interested in Monte Carlo
algorithms, then their advantage as to computational speed is established only in
comparison to those deterministic algorithms that are known at present.

Among the probabilistic algorithms of the type just considered--algorithms
evaluating functions--the most well known are two algorithms for discerning primality,
i.e., determining whether a given number is a prime. One of them is due to Strassen
and Solovay [21] and the other to Rabin [20]. Both start out from the following idea.

In order to show that an integer rn is composite, one merely has to find some
divisor of m. Therefore any such divisor can be termed a witness to the presence in
m of the property of "not being prime," or briefly, a witness to the fact that m is

composite. If m is a fixed natural number, then the testing of all natural numbers from
1 up to with the object of determining its divisors tells us whether rn is prime or
composite. Such a deterministic algorithm for discerning primality requires however
a large number of steps" the number is of the order of an exponential of the notational
length of m, i.e., the logarithm of m. If we introduce randomization and select several
numbers at random with the hope of finding witnesses, there will be no great advantage
in such an action. In fact, no matter what rn is, the number of its divisors is comparatively
small. Therefore, not finding witnesses after several attempts, we obtain too little
information.

The probabilistic algorithms--both Solovay and Strassen’s and Rabin’s--are also
based on the notion of witness but only a more delicate one. A witness now is not
simply a divisor of rn but is rather a number possessing a subtle number-theoretic
property. The property can be discerned by an effective procedure in polynomial time
(in relation to the notational length of m). If rn is prime, then not a single witness exists.

But now if m is composite, then "witnesses... are abundant. If tests fail many
times to produce a witness, then we are provably confident that the number is prime"
[20, 5]. In Rabin’s algorithm, for example, if rn is composite, then at least three-fourths
of the numbers between 1 (inclusively) and m (inclusively) are witnesses [26, Thm.
1] (in Theorem 8 in [20], a weaker lower bound of one-half was established for the
fraction of witnesses).

It now turns out to be useful to apply randomization and to select a random
number distributed uniformly between 1 and m. Having selected such a b, we test to
see whether it is a witness. If the answer is "Yes", then m is composite. If the answer
is "No." then we cannot know anything for sure. It will be recalled however that in
Rabin’s algorithm of all the numbers between 1 and m are witnesses. Therefore after
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k independent random selections of b, we have a correct answer with error probability
less than 1/22k. It is easy to see that to any fixed positive e, it is necessary to expend
polynomial time (in the notational length of m) in order to discern the primality of
m with an error probability less than e.

"Starting with 2400 and decreasing each time by 1, every number was subjected
to the test. Within a minute 2400-593 was identified as the largest prime below 24.
This number was tested more than 100 times without a change in the conclusion" [20,
4]. Thus it is possible to say that 2400-593 is a prime with error probability not

exceeding 2-200 (or even 2-2000 if each trial consists of not one random selection but
rather ten, which is not clear from the text). Some comments on the nature of such
probabilistic assertions may be found on p. 129 in [26].

It should be clearly realized however that we have not seen a randomized algorithm
which works faster than a deterministic one. As a matter of fact, it is quite possible
that there exists a deterministic algorithm that discerns primality and requires only
polynomial computational time. As Miller showed in [19], such an algorithm actually
exists whenever the generalised Riemann hypothesis holds.

Nevertheless, there is a sense that the introduction of randomness into algorithms
can afford some advantages. The following simple example indicates some possible
sources of such advantages if the latter do actually exist.

Suppose that at a distance of one step to the left or to the right of the place where
we are situated, there lies a scrap of paper on which some integer is written. We wish
to find out if it is even or odd. Beforehand we neither know the answer to this question
nor in which direction the note is situated. The best deterministic algorithm requires
three steps in the worst case: a step is taken to the left and if the note is not found
then two further steps to the right are needed. But if we are willing to obtain a correct
answer not with absolute certainty but rather with probability , then we can describe
a randomized algorithm requiring just one step. Here is the algorithm: flip a coin; if
it falls heads, go to the left and if it falls tails go to the right; if there is no note, flip
the coin once more, this time with the aim of determining the evenness or oddness of
the unknown number.

3.2. Evaluation of a function. Let us repeat what our basic problem is. We are
given some two-valued function or predicate q defined on the set of all words of some
alphabet, in particular on the set " of all binary chains. The question is what gains
may be achieved in the rate of evaluating the function if a suitable randomized algorithm
replaces a deterministic one?

We first state some terminology. Any computational apparatus under consideration
will be called a machine. A machine operates in steps governed by a program. A program
is a set of commands and exactly one command can be used at each step. This is a
description of a deterministic machine.

A probabilistic machine differs from its deterministic rival by the following feature:
at some steps there are several actions, instead of a single specified action, that the
machine can perform with given probabilities (it is assumed that all these probabilities
are computable real numbers, let us say, rational numbers). It is possible to assume
(and all of the facts presented below remain valid) that there are exactly two equally
likely actions at each step and a machine selects one of them to use at random. In
other words, at the beginning of each step, the machine flips a coin.

We now assign a meaning to the statement: a machine computes a function p in a
(running) time T with a probability p. By definition, here is what this sentence signifies.
When a machine processes an arbitrary argument a supplied to the input, the probability
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of the following event is at least p: "the machine stops after at most T(a) steps with
the result q (a)."

Henceforth, we shall always assume that p > 1/2. This probability p has a rather
small effect on the computational time. Indeed, it is easy to convert a machine that
evaluates a function with a probability p into a machine that evaluates it with a
pre-assigned probability arbitrarily close to one, with a resulting insignificant increase
in computational time, namely, it is multiplied by a constant. The new machine repeats
several times the evaluation of the initial machine and then chooses the final result to
be the one that has been obtained in a majority of the trials. It should be noted that
also for a deterministic machine the computational time can really only be evaluated
up to a multiplicative constant.

However one may not be interested at all in the computational time and one may
consider a machine that evaluates q with a specified probability p but with no time
restrictions, i.e., with an arbitrary computational time. There is an important (and
chronologically the very first) theorem on probabilistic machines proved by Claude
Shannon and his co-authors thirty years ago [4]: if a function q is computable on
some probabilistic machine with some probability p, then this function is also compu-
table on some deterministic machine. Thus if probabilistic machines do possess advan-
tages over deterministic machines, these advantages are not manifested by the mere
existence of an algorithm.

An analysis of the proof of the theorem just stated shows that if a probabilistic
machine computes a function q in time T, then a corresponding deterministic machine
can do it in a time not exceeding cT for some constant c. Thus, the largest acceleration
achievable at the expense of using randomization in algorithms involves merely a
reduction of the time T to log T.

At present the question remains unanswered as to whether it is possible to gain
something in computational time by replacing a deterministic machine by a probabilistic
one. Of course, no benefit will be derived if the function subject to evaluation is
extremely simple (for example, is a constant). As Shen’ pointed out recently, one also
cannot hope to derive any benefit from evaluating extremely complicated functions.

The question in its fully general form thus remains an open one. However, Freivald
gave a positive answer for one limited class of well-known simple computers. He
produced a function requiring O(n2) computational steps when using deterministic
single-tape single-head Turing machines and O(n log n) steps when using probabilistic
machines of the same type.

Thus Freivald has proved some unique facts about the advantages of evaluating
a function probabilistically even if only for a very limited computational model.

We now formulate the basic facts in a more precise manner. Our simplest Turing
machine has one tape which is infinite in both directions and is divided into storage
cells. At most one word in a pre-assigned alphabet can be written in each storage cell.
The machine head can run along the tape, read it, print out and also label itself from
a pre-assigned finite set of labels.

Before the computation begins, the argument is written down on the tape as a
finite chain of letters. When the machine finally stops, one of the digits zero or one is
in front of the head which it can read; and what the head reads at this final moment
is then the computational result.

We now give a simple example which seems to be due to Freivald. Let

1 ifx=y
q(x,y)=

0 ifxCy.
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Thus, o evaluates the truth of the statement whether x and y coincide. In order to
compute q on a Turing machine, we must represent the input pair (x, y) in the form
of a chain x y provided that x and y have been expressed in binary, decimal or any
other reasonable system of notation; here is a new letter. Then the chain x. y is
placed on the tape. We agree to denote the length of the chain x y by n.

Using the technique of Barzdin’ [6], we can prove that the best deterministic
algorithm for computing q on a single-tape single-head Turing machine requires
computational time at least O(n2). (Of course, for any given algorithm, the computa-
tional time depends on the whole input x y and not just its length n. Therefore, in
saying "requires a time which is not less than O(n2) ’’, we are thinking of the worst
case--caused by the "worst" input of length n--which could only happen in computing
q by our best algorithm.) Freivald proposed a method in [18], [24] with which it is
possible to prove that if one allows random steps in a computation, then the computa-
tional time can be reduced down to O(n log n)mand then, as was already stated, a
correct answer will occur with arbitrarily high probability. In addition, Freivald proved
that it is impossible to lower the computational time any further.

Freivald’s method, which makes it possible to lower the deterministic estimate
O(n2) down to the probabilistic estimate O(n log n), is reminiscent of the method of
witnesses for the algorithm of primality developed in 3.1. Any prime p which is not
a divisor of the difference x-y is a witness to the noncoinciding of x and y. Starting
from this, Freivald’s probabilistic algorithm works as follows. It generates in random
fashion just one prime p altogether (but nevertheless by means of a special procedure)
and then checks whether x is congruent to y modulo p. If x y (mod p), then the
answer to the main question "Is x=y?" is "No" and it is a correct answer. If
x y (mod p), the answer is "Yes, they coincide" and though this answer need not be
correct, the probability of an error is small. The lowering of the computational time
achievable by using a single-tape single-head computer is due to the following. There
is no need (in the new probabilistic algorithm) to transfer all of the information from
the portion of the tape where x is written to the portion of the tape where y is written;
it suffices now to transfer just a part of this information (namely, the remainder on
dividing by p--and, indeed, including p itself).

It might be surmised that all the advantages of probabilistic machines are associated
with the potential errors. It turns out that this is not so. Freivald constructed a function

4’ in [25], [44] requiring essentially less time in its computation on a suitable probabilis-
tic errorless (single-tape single-head) Turing machine than in its computation on any
kind of single-tape single-head deterministic Turing machine. The word "errorless"
means that every result given by the machine is correct. This function q shows that at
least some of the advantage in using randomized algorithms is not in allowing little
likely errors but in the random bifurcation of the computational process.

It is unknown whether to any probabilistic Turing machine M that evaluates some
function, there is an errorless machine evaluating the same function just as fast as M.
No one knows either how to distinguish those problems in which the application of
randomized algorithms leads to demonstrable benefits from those problems where no
such benefits will arise.

3.3. Polynomial computational time. The preceding facts concern only single-tape
single-head Turing machines and cannot be carried over immediately to other computa-
tional models, say, multi-tape and multi-head Turing machines and so forth. So that
the results ofthe previous section talk not so much about the properties ofthe considered
functions as about the properties of computational models. And in fact, the predicate
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of an equality, say, can easily be computed (deterministically) in many computational
models--and randomization introduces no benefits here.

Of course, the computational time for a specified function may change when we
change a computational model. Fortunately, such time changes are not too radical.
For a fixed computational model, consider the class of all functions computable on
machines of this model in polynomial time (polynomial in the input length). It turns
out that is independent of the model selected: this class is unique for all standard
computational models. Any function in is said to be computable in deterministic
polynomial time.

One can define in a completely analogous way the class of all functions
computable in probabilistic polynomial time. By virtue of what was said earlier in

3.2, there is no need to indicate any specific value for a probability in defining the
class .

The main question which has drawn a lot of attention is whether and
coincide. It is only known that

c Space.

Space in this denotes the class of all (two-valued) functions computable on the
polynomial range on deterministic or probabilistic machines, which one does not matter
in this case, as shown by J. Simon’s theorem published, for example, in [28].

Although the question "Is the class equal to the class ?" is still open,
there are a number of theorems furnishing a partial answer in the affirmative direction.
We are thinking here of the Adleman-Bennet-Gill theorem and Gics’ theorem.

The first one establishes that

where the class N// is in a certain sense similar to : it is the so-called "non-uniform
-class".

In order to clarify what A;// is, we recall the definition of . A predicate or
two-valued function q defined on the set E of all binary chains belongs to if and
only if there is a polynomial Q and a deterministic machine 92 such that, for any n
and each chain x of length n, the machine 9 computes q(x) in at most Q(n) steps.
The definition of the class o?/ differs from that of in just the following detail:
the condition of existence of a unique deterministic machine 9 changes to the weaker
condition of the existence of some sequence 9o, 921,. of such machines. The precise
formulation is as follows: by definition, o-g if and only if there exists a polynomial
Q and a sequence of deterministic machines 920,921,. such that, for any n and each
chain x of length n, the machine 92n evaluates q(x) in at most Q(n) steps, the length
of the program of n also not exceeding Q(n). Observe that this definition requires
not only no polynomial computability but even no simple computability of the sequence

The definitive form of the inclusion = o?/ was proved by Bennet and Gill
[27]. Adleman [23] was the first to state a theorem about the inclusion but he considered
only randomized machines of a special form.

Gics theorem was published in [36]. It expresses an arbitrary predicate G
in terms of a suitable predicate S and polynomially restricted quantifiers. Here is
an exact formulation: any predicate G belonging to can be represented in the form

G(x) : ::ly Vz S(x, y, z)

[yl < Q(lxl), Izl < Q(lxl),
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where Q is a polynomial, Ixl, lyl and Izl are as usual the lengths of chains x, y and z,
and S . The notation "S " means that S(x, y, z) is computable by some deter-
ministic machine in a time not exceeding a polynomial in Ixl /lyl /lzl.

The mathematical and philosophical importance of the question as to whether
the classes and Y3 coincide warrants no comment.

4. Randomized Algorithms: Application to the Foundations of Probability Theory. It
is highly remarkable that the study of randomized algorithms finds application in the
foundations of probability theory and the theory of complexity of finite objects.

4.1. A priori probalility of a binary chain. In this section, the term "machine"
will denote any representative of a fixed family of computers, for definiteness say, all
single-tape single-head Turing machines. We choose some probabilistic machine 9
from this family and feed 0 into the input of the machine. If and when the machine
stops after processing the input, a binary chain sc E is read from the tape. Once a
machine is given, each chain sc has its own probability p(sc) of appearing on the
tape at the conclusion of a computation starting from zero. The sum s =ezp(sc)
does not exceed one so that the function p can be called a semi-distribution. Clearly,
1 s is the probability of the event "the machine never stops if its input is 0". It turns
out that there is among all such semi-distributions an almost maximal one which we
denote by p. This means that there is a machine 9d with the following property" if/
is the semi-distribution corresponding to and p is any semi-distribution corresponding
to any other machine , then

cp(:) _>- p(:)

for any , where c is a constant depending just on but not on :. Any two almost
maximal semi-distributions/ and P2 are related by the relation

cp() >-_ p(), cp() >- p,(),

for some constants c and cz.
If/3 is any almost maximal distribution, then/() can be treated as the a priori

probability of the chain . Each conception of a priori probability may in turn be
treated as a measure of complexity in that simpler events have higher subjective or a
priori probability. It is better to take as a measure of complexity not/(:) itself but
its logarithm, or more precisely -log/(:). If we want our measure of complexity to
be an integer, then this logarithmic quantity can be replaced by its closest integral value.

This approach, which goes back to 15], is closely related to the ideas of 1.4. In
fact, a binary sequence (a0, a,...)el) is random relative to the uniform Bernoulli
distribution if and only if the inequality

-logp(ao, a,. , a,_)>- n- c

holds for all n and some c not depending on n. This assertion of the equivalence of
the two definitions, and also for a slightly different notion of a priori probability, can
be deduced from [29]" it is an immediate consequence of Corollary 3.2 and Theorem
2.3.

4.2. A priori frequency of a binary chain. Another development of the topic being
discussed in this chapter was suggested recently by Muchnik [43]. Consider some
computable sequence of binary chains (so0, sol, .), sci , =0, 1,. .. For sc any chain
in , we can compute its lower frequency q() given by

q(sC) lirn I{ili < n & i }1/ n,
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where 1. denotes cardinality of a set. It turns out that among the computable sequences
there is an almost maximal sequence (0, :1,"" ") (in fact even many such sequences)
possessing the following property: if t is the lower frequency for this computable
sequence and q is the lower frequency for any other computable sequence, then

C(l() >-- q().
In this, : is an arbitrary chain in __, and c depends only on the sequence (:0, :1,"" ")
as a whole and not on :.

For : any chain in .., the quantity t](:) can be treated as the a priori frequency
of : and thereby as some measure of its complexity.

Thus, in this chapter we have described two measures of complexity of a word
:: its a priori probability/5(:) and its a priori frequency t](:). It would probably be
more correct to call them measures of simplicity rather than measures of complexity.
These two measures do not coincide (one can only speak here about coincidence up
to at most a multiplicative constant). Nevertheless, they have, indeed, a lot in common.

More precisely t] coincides with/5’ (which means that 0< a -< p’(:)/t(:) -< b for
some constants a and b), where/5’ is the so-called relativized a priori probability with
respect to 0’. The quantity/5’ is defined in a similar way to/5 with the only ditierence
now being that instead of ordinary randomized Turing machines, one uses randomized
machines that in some way know an answer to any question out of a series forming
an algorithmically unsolvable lump problem, as say, whether a Turing machine with
a program z would ever come to a halt in processing an input 0.
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