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1.0 IntegratIng Sphere theory

The integrating sphere is a simple, yet often misunderstood 
device for measuring optical radiation. The function of 
an integrating sphere is to spatially integrate radiant flux. 
Before one can optimize a sphere design for a particular 
application, it is important to understand how the integrating 
sphere works. How light passes through the sphere begins 
with a discussion of diffuse reflecting surfaces. From this, 
the radiance of the inner surface of an integrating sphere is 
derived and two related sphere parameters are discussed, 
the sphere multiplier and the average reflectance. Finally, 
the time constant of an integrating sphere as presented is 
relevant to applications involving fast pulsed or short lived 
radiant energy.

1.1 radiation exchange Within a Spherical enclosure

The theory of the integrating sphere originates in the theory 
of radiation exchange within an enclosure of diffuse surfac-
es. Although the general theory can be rather complex, the 
sphere is a unique, yet simple solution to understand.

Consider the radiation exchange between two differential
elements of diffuse surfaces.

The fraction of energy leaving dA
1
 and arriving at dA

2
 is 

known as the exchange factor dFd1-d2 . It is given by:  

Where q
1
 and q

2
 are measured from the surface normals.

Consider two differential elements, dA
1
 and dA

2
 inside a 

diffuse surface sphere.  

Since the distance S = 2Rcosq1 = 2Rcosq2 :  

The result is significant since it is independent of viewing 
angle and the distance between the areas. Therefore, the 
fraction of flux received by dA

2
 is the same for any radiating 

point on the sphere surface.

If the infinitesimal area dA
1
 instead exchanges radiation with 

a finite area A
2
, then Eq. 2 becomes:   

Since this result is also independent of dA
1
 :     

Where A
S
 is the surface area of the entire sphere. There-

fore, the fraction of radiant flux received by A
2
 is the frac-

tional surface area it consumes within the sphere.
FIGURE 1

FIGURE 2
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1.2 the Integrating Sphere radiance equation

Light incident on a diffuse surface creates a virtual light 
source by reflection. The light emanating from the surface is 
best described by its radiance, the flux density per unit solid 
angle. Radiance is an important engineering quantity since 
it is used to predict the amount of flux that can be collected 
by an optical system that might view the illuminated surface.

Deriving the radiance of an internally illuminated integrating 
sphere begins with an expression of the radiance, L, of a dif-
fuse surface for an input flux, Fi .     

Where r is the reflectance, A the illuminated area and p the 
total projected solid angle from the surface. 

For an integrating sphere, the radiance equation must con-
sider both multiple surface reflections and losses through 
the port openings needed to admit the input flux, F

i
, as well 

as view the resulting radiance. Consider a sphere with input 
port area A

i
 and exit port A

e
.   

The input flux is perfectly diffused by the initial reflection. 
The amount of flux incident on the entire sphere surface is:     

Where the quantity in parenthesis denotes the fraction of 
flux received by the sphere surface that is not consumed by 
the port openings. It is more convenient to write this term as 
(1-f ) where f is the port fraction and f = (Ai + Ae)/As. When 
more than two ports exist, f is calculated from the sum of all 
port areas.

By similar reasoning, the amount of flux incident on the 
sphere surface after the second reflection is:       

The third reflection produces an amount of flux equal to       

It follows that after n reflections, the total flux incident over 
the entire integrating sphere surface is:        

Expanding to an infinite power series, and given that r(1-f ) 
< 1, this reduces to a simpler form:     

Equation 10 indicates that the total flux incident on the 
sphere surface is higher than the input flux due to multiple 
reflections inside the cavity. It follows that the sphere sur-
face radiance is given by:        

This equation is used to predict integrating sphere radi-
ance for a given input flux as a function of sphere diam-
eter, reflectance, and port fraction. Note that the radiance 
decreases as sphere diameter increases.

FIGURE 3
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1.2.2 the average reflectance

The sphere multiplier in Eq. 13 is specific to the case where 
the incident flux impinges on the sphere wall, the wall reflec-
tance is uniform and the reflectance of all port areas is zero. 
The general expression is:      

where;  r
0
 = the initial reflectance for incident flux

 rw = the reflectance of the sphere wall
 r

i 
= the reflectance of port opening i

 f
i
 = the fractional port area of port opening i   

The quantity    can also be described as 
the average reflectance r for the entire integrating sphere. 
Therefore, the sphere multiplier can be rewritten in terms of 
both the initial and average reflectance:     

1.3 Spatial Integration

An exact analysis of the distribution of radiance inside an 
actual integrating sphere would depend on the distribu-
tion of incident flux, the geometrical details of the actual 
sphere design, and the reflectance distribution function for 
the sphere coating as well as each surface of each device 
mounted at a port opening or inside the integrating sphere. 
Design guidelines for optimum spatial performance are
based on maximizing both the coating reflectance and the 
sphere diameter with respect to the required port openings 
and system devices.

The effect of the reflectance and port fraction on the spatial 
integration can be illustrated by considering the number of 
reflections required to achieve the total flux incident on the 
sphere surface given by Eq. 10. The total flux on the sphere 
wall after only n reflections can be written as:

1.2.1 the Sphere Multiplier

Equation 12 is purposely divided into two parts. The first 
part is approximately equal to Eq. 5, the radiance of a dif-
fuse surface. The second part of the equation is a unitless 
quantity which can be referred to as the sphere multiplier.      

It accounts for the increase in radiance due to multiple re-
flections. The following chart illustrates the magnitude of the 
sphere multiplier, M, and its strong dependence on both the 
port fraction, f, and the sphere surface reflectance r.      

A simplified intuitive approach to predicting a flux density 
inside the integrating sphere might be to simply divide the 
input flux by the total surface area of the sphere. However, 
the effect of the sphere multiplier is that the radiance of an 
integrating sphere is at least an order of magnitude greater 
than this simple intuitive approach. A handy rule of thumb is 
that for most real integrating spheres (.94<r <.99 ; .02<f
<.05), the sphere multiplier is in the range of 10 - 30.

FIGURE 4
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where the time constant, t, is calculated as: 

and  r = the average wall reflectance
 c = the velocity of light
 D

s
 = the diameter of the integrating sphere  

Time constants of typical integrating spheres range from a 
few nanoseconds to a few tens of nanoseconds.

The radiance produced after only n reflections can be com-
pared to the steady state condition.    

Since the integrating sphere is most often used in the 
steady state condition, a greater number of reflections 
produces the steady state radiance as both r increases and 
f decreases. Therefore, integrating sphere designs should 
attempt to optimize both parameters for the best spatial 
integration of radiant flux.

1.4 temporal response of an Integrating Sphere

Most integrating spheres are used as steady state devices. 
The previous analysis of their performance and applica-
tion assumes that the light levels within the sphere have 
been constant for a long enough time so that all transient 
response has disappeared. If rapidly varying light signals, 
such as short pulses or those modulated at high (radio)
frequencies, are introduced into an integrating sphere, the 
output signal may be noticeably distorted by the “pulse 
stretching” caused by the multiple diffuse reflections. The 
shape of the output signal is determined by convolving the 
input signal with the impulse response of the integrating 
sphere.

This impulse response is of the form:

FIGURE 5

EQ. 18

EQ. 17
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The smallest sphere produces the highest radiance in 
general. However, since the integrating sphere is usually 
employed for its ability to spatially integrate input flux, a 
larger sphere diameter and smaller port fraction will improve 
the spatial performance. Notice in Figure 6 that all three 
sphere designs converge on the same unit flux density
as the reflectance approaches 1.0. Therefore, high reflec-
tance integrating sphere materials such as Spectralon can 
optimize spatial performance at only a slight tradeoff in 
radiance efficiency.

2.2 Integrating Sphere Coating Selection

The sphere multiplier as illustrated by Figure 4 is extremely 
sensitive to the sphere surface reflectance. Therefore, the 
selection of sphere coating or material can make a large dif-
ference in the radiance produced for a given sphere design. 
Consider the diffuse reflectors offered by Labsphere known 
as Spectraflect and Spectralon. Both are useful for UV-VIS-
NIR applications in the 250 nm to 2500 nm
spectral region. The typical spectral reflectance of each is 
shown in Figure 7 below.

2.0 IntegratIng Sphere DeSIgn

The design of an integrating sphere for any application 
involves a few basic parameters. This includes selecting the 
optimum sphere diameter based on the number and size of 
port openings and peripheral devices. Selecting the proper 
sphere coating considers spectral range as well as per-
formance requirements. The use of baffles with respect to 
incident radiation and detector field-of-view is discussed;
and radiometric equations are presented for determining the 
coupling efficiency of an integrating sphere to a detection 
system.

2.1 Integrating Sphere Diameter

Figure 4 indicates that decreasing the port fraction has a 
dramatic effect on increasing the sphere multiplier. For port 
fractions larger than 0.05, one begins to lose the advan-
tage offered by the high reflectance coatings available for 
integrating spheres. The first rule of thumb for integrating 
spheres is that no more than 5% of the sphere surface area 
be consumed by port openings.

Real integrating spheres are designed by initially consid-
ering the diameter required for the port openings. Port 
diameter is driven by both the size of devices as well as the 
geometrical constraints required by a sphere system.

Consider the case of a two port integrating sphere; both 
ports are of unit diameter. The relative radiance produced 
as a function of sphere diameter, Ds , for an equivalent input 
flux is proportional to:

The equation can be plotted as a function of reflectance for 
different sphere diameters and the resulting port fraction for 
each is shown in Figure 6.

FIGURE 7

FIGURE 6

EQ. 19
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Both coatings are highly reflective, over 95% from 350 nm to 
1350 nm, therefore, intuitively one might expect no signifi-
cant increase in radiance for the same integrating sphere. 
However, the relative increase in radiance is greater than 
the relative increase in reflectance by a factor equal to the 
newsphere multiplier, M

new
.

The magnitude of this effect is depicted below:

Although Spectralon offers a 2% to 15% increase in reflec-
tance over Spectraflect within the wavelength range, an 
identical integrating sphere design would offer 40% to 240% 
increased radiance. The largest increase occurs in the NIR 
spectral region above 1400 nm.

2.3 Baffles and Detector Field-of-View

In using integrating spheres, it is important that the viewed 
radiance does not include a portion of the sphere surface 
directly irradiated by incident flux. This will introduce a false 
response.

Baffles coated with the same material as the integrating 
sphere wall block the view of incident flux which has not 
undergone at least two reflections from the sphere surface. 
The optical system in Figure 9 cannot directly view the in-
cident flux. However, the baffle is positioned to prevent first 
reflections from entering the field-of-view for the
photodetector.

Baffles can be considered extensions of the sphere surface. 
Their contribution to the sphere area can be factored into 
the radiance equation although it is not usually significant. 
The fractional contribution of baffles to the sphere surface 
area is usually quite small.

The radiance at the incident area, Li, is higher than the aver-
age for the entire sphere surface by an amount equal to Eq. 
5 for the directly irradiated area Ai. The radiance ratio for the 
incident to average sphere radiance is given by:

where f
i
 = A

i
/A

s
.

The radiance ratio increases rapidly with decreasing spot 
diameter. Considering the reciprocity of light rays, the same 
considerations must be applied to the field-of-view of a pho-
todetector within the integrating sphere. The fractional area 
f
i
 can be converted into the detector’s angular field-of-view.

FIGURE 8

FIGURE 9

FIGURE 10

EQ. 21

EQ. 20
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2.4 Flux on the photodetector

The radiance of the sphere wall determines the total flux 
incident on a photodetector mounted at or near a port of the 
integrating sphere.

By definition, the total flux incident on the detector active 
area, A

d
 (m2) is:

where: W = projected solid angle (sr)

A good approximation for W in almost all cases is:

In the case of imaging optics used with the detector, the 
angle q is subtended from the exit pupil of the system. The 
detector is the field stop of the system.

In both cases, as either the area of irradiation or the field-
of-view approaches total coverage of the sphere surface, 
the radiance ratio approaches unity. As either parameter de-
creases, the radiance ratio rapidly increases. In applications 
where the port of an integrating sphere is being used as a 
uniform radiance source, the result is increased non-uni-
formity. When the sphere is used as a collector to measure 
radiant flux, the result is increased measurement error if 
incident flux directly enters the detector’s field-of-view.

One method of providing a photodetector with a hemi-
spherical field-of-view is to attach a diffuser. One of the best 
diffuser attachments is an auxiliary or satellite integrating 
sphere. The port of this sphere is baffled from direct view of 
incident flux.

Of course, Figure 9 (on the previous page) presents another 
solution to the potential problem of small detector field-of-
view. In this case, the real field-of-view on the sphere  wall 
as defined by the photodetector’s imaging system can be 
considered as a “virtual detector” with a hemispherical 
field-of-view. The baffle placement ensures this effect. The 
integrating sphere applications shown in Section 3.0 present 
other examples of proper baffle placement.

FIGURE 11

FIGURE 12

FIGURE 13

EQ. 23

EQ. 22
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The f-number (f/#) of an optical system is also used to 
express its light gathering power. Therefore:

The efficiency of the optical system, which is generally a 
function of the transmittance and reflectance of individual 
components, must also be considered. Therefore the detec-
tor incident flux is:

where, e
0
 = optical system efficiency (unitless).

2.5 Fiberoptic Coupling

A similar equation is used to calculate the incident flux gath-
ered by a fiberoptic cable coupled to an integrating sphere.

The numerical aperture (NA) of an optical fiber is used to 
describe its light coupling ability. The projected solid angle 
is:

Reflectance losses at the air/fiber interface must be consid-
ered in determining the total flux accepted by the fiber. If R 
is the reflectance at the fiber face, then:

For a single strand fiber, A
f
 is the area of the fiber end 

calculated for the core diameter. If a fiber bundle is used, 
this quantity becomes the individual core diameter times 
the number of fibers in the bundle. The light emanating from 
the other end of the fiber is a function of its length (cm), the 
material extinction coefficient (cm-1), and the exit
interface reflection.

FIGURE 14

EQ. 27
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Photometers are a distinct type of radiometer which use a 
quantum detector filtered to emulate the spectral response 
of the standard human observer. This specific responsivity 
is known as the luminous efficiency function. The primary 
unit of photometric flux is the lumen. The detector response 
function weights and integrates the spectral radiant flux to 
produce the lumen scale. Photometry has the unique
distinction of being the only system of physical measure-
ment based entirely on human perception.

3.1.1 the Sphere photometer

The oldest application for the integrating sphere is the 
measurement of total geometric luminous flux from electric 
lamps. The technique originated at the turn of the 20th cen-
tury as a simple and fast method of comparing the lumen 
output of different lamp types. It is still widely used in the 
lamp industry for manufacturing quality control. The
alternative method is a goniophotometer which would need 
to rotate a photodetector in a complete sphere around the 
lamp. Each discrete intensity point (lm/sr) is then integrated 
over 4p steradians.

In a sphere photometer, the lamp to be measured is 
mounted at the center of the integrating sphere and baffled 
from the viewing port equipped with a diffuser and photopic 
response detector. The baffle is usually positioned at 2/3 
of the radius from the sphere center. Its size should be as 
small as possible yet large enough to screen the maximum 
dimension of the lamp.

The lumen output from the test lamp is determined by first 
calibrating the photodetector signal using a lamp standard 
of known luminous flux. The lamps are alternately  substi-
tuted into the integrating sphere. An auxiliary lamp can be 
permanently mounted inside the sphere to correct for the 
substitution error caused by different self absorption from 
the test and standard lamps. Auxiliary lamps are

3.0 IntegratIng Sphere applICatIonS

Integrating spheres collect and spatially integrate radant 
flux. The flux can be measured directly or after it has 
interacted with a material sample. The sphere as part of 
a radiometer or photometer can directly measure the flux 
originating from lamps and lasers or the flux density pro-
duced from hemispherical illumination. Perhaps the largest 
application for integrating spheres is in the measurement of 
the total reflectance or transmittance from diffuse or scat-
tering materials. An alternative application utilizes the port 
opening of an internally illuminated integrating sphere as 
a large area source that features uniform radiance. These 
sources can be used to calibrate electronic imaging devices 
and systems or simply as uniform back illuminators.

3.1 radiometers and photometers

An integrating sphere combined with a photodetector of the 
appropriate spectral response can be used to directly mea-
sure the total geometric flux emanating from a light source 
or the flux density of an illuminated area. The geometric 
distribution of the light to be measured determines the ap-
propriate integrating sphere design. The spectral properties 
of the light source determines the appropriate photodetec-
tion system.

In general, radiometers measure light in accordance with 
the SI unit of radiant flux, the watt. Quantum response pho-
todetectors are most commonly used in radiometers. Since 
their responsivity varies spectrally, it is more appropriate to 
tailor the response for a specific spectral region through the 
use of optical filters in nearly all cases except perhaps when 
the incident flux is monochromatic.

Thermal detectors respond equally to all wavelengths 
of  light. This property also makes them susceptible to 
background thermal radiation. Most often, they need to be 
temperature controlled and the input radiation is modulated 
for synchronous detection.

Spectroradiometers measure light as a function of wave-
length. These feature a detector coupled to a spectral sepa-
ration device such as a diffraction grating monochromator or 
a Fourier transform interferometer.

The spectral dependence of the integrating sphere multiplier 
modifies the relative spectral responsivity of the photodetec-
tor. The sphere/detector combination must be considered 
mutually in order to design or calibrate the measurement 
system for a particular responsivity.

FIGURE 15
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usually mounted at the sphere vertex diametrically opposite 
the viewing port. Lamp standards originate from national 
standardizing laboratories and are based on goniophoto-
metric measurements.

The photopic response detector in Figure 15 can be 
replaced with a spectroradiometer for direct measurements 
of spectral radiant flux. The ability to obtain spectral informa-
tion from the integrating sphere is advantageous for several 
reasons. With spectral measurements, the spectral respon-
sivity of the sphere wall and the relative spectral
responsivity of the photodetector do not influence the 
luminous efficiency function. Lumens is not the only quantity 
obtained for a particular lamp. Spectral flux is easily con-
verted to yield important color properties such as chromatic-
ity coordinates, correlated color temperature, and the color 
rendering indices.

3.1.2 laser power Meters

The sphere photometer offers the advantage of total collec-
tion and spatial integration. In the measurement of highly 
collimated sources such as lasers, the integrating sphere 
offers the advantage of signal attenuation. From Eq. 12 and 
Eq. 22, it is evident that the fraction of flux received by a 
photodetector mounted at the sphere surface is
approximately the fractional surface area consumed by its 
active area times the sphere multiplier.

For a 1mm2 active area on a 100mm diameter sphere, the 
detected flux would be less than 0.1% of the incident flux. 
Even further attenuation is possible by recessing the detec-
tor from the sphere port as in Figure 12.

The attenuation and insensitivity to misalignment provides 
a laser power meter which employs a photodetector with a 
smaller and faster active area. Integrating sphere power

meters have been used to measure industrial CW lasers 
at kilowatt levels. The high reflectance of the integrating 
sphere coating avoids direct damage from the first strike. 
The utilization of faster response detectors supports real 
time power monitoring in feedback control of industrial laser 
output.

Integrating sphere power meters are extremely useful 
for divergent and non-symmetrical beams such as those 
produced by diode lasers. These tend to overfill the active 
area of conventional laser power meters. Except in the case 
of high power diode laser arrays, the integrating sphere is 
once again utilized more for its ability to spatially integrate 
radiant flux than its ability to attenuate.

The baffle placement should be based on preventing direct 
view of the “hot spot” produced by the laser beam as de-
picted in Figure 16.

In the case of diode lasers, the field-of-view of the detector 
should not overlap the direct area of illumination. Although 
the design tendency in this application may be to select a 
small sphere diameter to coincide with the device dimen-
sions, a larger diameter sphere more easily conforms to the 
geometrical requirements and reduces the
measurement uncertainty.

3.1.3 Cosine receptor

In the sphere photometer and laser power meter examples, 
the integrating sphere is used for measuring total radiant 
flux. The geometry of the radiant source in both applications 
takes advantage of total flux collection by the sphere. In the 
measurement of flux density, photodetectors by themselves 
do not exhibit uniform response. Diffusers
are usually attached to provide the needed uniformity. The 
integrating sphere is one such diffuser.

FIGURE 16

FIGURE 17
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In either design, the angular response does not perfectly 
correspond to the cosine function since certain incident rays 
will first impose on the baffle before being distributed to the 
sphere wall. The true angular response is usually deter-
mined experimentally and then applied as a correction factor 
in high accuracy irradiance measurements.

3.2 reflectance and transmittance of Materials

The single largest application for integrating spheres is the 
measurement of the reflectance and transmittance of dif-
fuse or scattering materials. The measurements are almost 
always performed spectrally, as a function of wavelength. 
The one exception may be the measurement of luminous 
reflectance or transmittance using a photopic response 
detector.

In the ultraviolet, diffuse transmittance is used to deter-
mine the UV resistance of pharmaceutical containers, sun 
protective clothing, and automotive paints. In the visible 
spectrum, the color of materials is quantified and controlled 
in industries such as paints, textiles and the graphic arts. In 
the infrared, the total hemispherical reflectance determines 
surface emissivities applied to radiant heat transfer analysis
of thermal control coatings and foils used in spacecraft 
design.

A transmittance measurement places a material sample at 
the entrance port to the sphere (as shown in Figure 20).

In reflectance measurements, the sample is placed at a 
port opening opposite the entrance port. The incident flux is 
reflected by the sample. The total hemispherical reflectance, 
both the diffuse and specular components, is collected by 
the integrating sphere.

The centrally located baffle prevents direct irradiation of the 
detector. The entrance port becomes the effective measur-
ing aperture of the device. For regular irradiance mea-
surements, the cosine angular response is required. The 
irradiance of a flat surface E, is proportional to the cosine of 
the angle of incidence, q.

For spectral irradiance measurements in which a monochro-
mator is used, a 90° port geometry can be more accommo-
dating. This design is commonly used for global irradiance 
monitors since the integrating sphere provides good spectral 
response from the UV to the NIR regions of the atmospheric 
solar spectrum. A quartz weather dome
guards against environmental contaminants.

FIGURE 20

FIGURE 19

FIGURE 18

EQ. 28
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The angle of incidence in reflectance measurements is usu-
ally slightly off normal up to 10°. The specular component 
can be excluded from the measurement by using normal 
(0°) incidence or by fitting another port in the specular path 
and using a black absorbing light trap to extinguish the 
specular flux.

Reflectance measurements at larger or variable incident 
angles are performed by placing the sample at the center of 
the sphere and rotating it about a fixed input beam.

Baffles are placed to prevent the photodetector on the 
sphere from directly viewing the irradiated sample in either 
measurement. In the reflectance geometry, a baffle is 
usually placed between the portion of the sphere wall that 
receives the specular component as well. It is best to use a 
photodetector with a hemispherical field-of-view to reduce 
any sensitivity to the scatter distribution function of the 
sample.

3.2.1 Substitution vs. Comparison Spheres

A unique integrating sphere error is attributed to the designs 
depicted in Figure 20 and Figure 21 due to the sample ef-
fectively altering the average reflectance of the sphere wall. 
Calibration of the transmittance scale is usually performed 
by initially measuring the incident flux before the sample is 
placed against the entrance port.

Calibration of the reflectance scale is performed by compar-
ing the incident flux remaining in the sphere after reflecting 
from a standard reference material.

The ideal measurement relationship is for the ratio of radi-
ance produced inside the sphere to be equal to the ratio of 
the reflectance for each material.

where; r
r 
= the reflectance of the reference material

The sample measurement quantity, r
s
, is properly known 

as the reflectance factor. The term refers to the fact that the 
incident flux was not directly measured as the reference. 

However, in the substitution sphere of Figure 23, the aver-
age reflectance of the sphere changes when the sample is 
substituted for the reference material. The true measure-
ment equation in a substitution sphere is, therefore;

where;  r
s 
= average wall reflectance with sample

 r
r 
= average wall reflectance with reference

The average reflectance with the sample material in place, 
r

s
, cannot be easily determined since it is also dependent 

on r
s 
. The magnitude of this error can be plotted for a typi-

cal Spectraflect integrating sphere with 5% port openings 
and a 1% sample port opening. The reference material is 
Spectralon.FIGURE 22

FIGURE 23

FIGURE 21

EQ. 30

EQ. 29
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3.2.2 Measurement geometry 0°/d vs. d/0°

The previous examples of reflectance and transmittance ge-
ometries depicted a directional incident flux and hemispheri-
cal collection by the integrating sphere after interaction with 
the sample material. The geometry is correctly defined as 
directional/hemispherical and commonly abbreviated as 
0°/d referring to near normal incidence and diffuse collec-
tion. The 0° angle should be replaced by the actual angle 
of incidence when describing a particular integrating sphere 
instrument, for example, 8°/d. Reflectance factor is the 
quantity directly measured in 0°/d geometry.

A reciprocal optical geometry can be used in both reflec-
tance and transmittance measurements. In the d/0° geom-
etry, the sample irradiation is hemispherical and the sample 
is viewed from the near normal direction.

The measurement quantity in the reflectance geometry is 
properly termed the radiance factor. The radiance of the 
sample under diffuse irradiation is compared to the radiance 
of a reference material. The radiance factor is equivalent 
to the reflectance factor for reciprocal geometries, i.e.- the 
étendue and angle from the sample normal is the same for 
the directional beams, a hemispherical detector field-of-view 
(0°/d) is replaced by a hemispherical input flux (d/0°). In-
struments which use d/0° often employ an auxiliary integrat-
ing sphere source.

In order to utilize Eq. 29, the proper sphere design is one 
that keeps the average reflectance constant. A comparison 
sphere mounts both the sample and the reference simulta-
neously to port openings in the integrating sphere.

The comparison sphere features an average sphere wall 
reflectance that is constant, a function of each material 
reflectance. In a single beam instrument, the sphere can be 
rotated to alternately position each material in the incident 
beam. In double beam reflectometers, a baseline is initially 
established with a standard reference material mounted at 
the sample port opening in order to determine the ratio of
incident flux in each beam.

Substitution error also applies to transmittance measure-
ments since the sample surface tangential to the port open-
ing will contribute to the average reflectance of the sphere 
cavity. A comparison sphere is recommended for transmit-
tance measurements as well.

FIGURE 26

FIGURE 25

FIGURE 24
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There are two main advantages of the d/0° geometry. The 
incident flux is significantly greater since integrating spheres 
provide total light collection, thus increasing the signal-
tonoise ratio for the instrument. Polychromatic irradiation 
will stimulate photon induced radiance, such as that due to 
fluorescence, which often needs to be quantified in many 
color and appearance measurements. The main disadvan-
tage of d/0° instruments is sample heating which can induce 
thermochromic effects. Many commercial color  measure-
ment instruments will utilize flashlamps to reduce thermal 
measurement error.

3.3 Uniform Sources

In the previous applications, the integrating sphere is used 
as a collecting device for the measurement of radiant flux, 
either the absolute amount emitted from a light source itself 
or the relative amount of flux transmitted or reflected by 
materials.

The open port of an internally illuminated integrating sphere 
can itself serve as a large area diffuse light source.

Lamps are placed inside the integrating sphere around the 
perimeter of the viewing port. The lamps are usually baffled 
from the port. The radiance of the sphere is a function of the 
wattage rating of the lamp. Multiple lamps can be used

to increase the radiance as well as provide a step wise 
method of attenuating the radiance level.

Tungsten halogen lamps are most commonly used with 
integrating sphere sources. These lamps provide a continu-
ous spectrum, free of emission lines or temporal instability 
when operated from a current regulated power supply. The 
spectral radiance of the sphere source can be estimated 
by combining the sphere radiance equation with blackbody 
equations for the spectral radiant flux.

and,

where;

 r(l)  = spectral reflectance of sphere surface
 Fi l  = spectral radiant flux
 Fo  = rated wattage of the lamp
 l  = wavelength
 T  = temperature of the filament
	 	 ≈	correlated	color	temperature
 c

1
, c

2
, s  = blackbody constants

The radiance equation is multiplied by the number of lamps 
if more than one lamp is used.

FIGURE 28

FIGURE 27

EQ. 31

EQ. 32
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3.3.2 Irradiance Uniformity

Radiance is the flux density leaving a radiant surface as 
viewed from a distance away from the surface. A Lamber-
tian surface features a radiance that is perfectly diffuse, 
independent of viewing angle. Irradiance is the flux density 
falling on a surface and is measured at the plane of the 
surface.

Integrating sphere sources are most often used to test an 
imaging system. The desired effect is uniform radiance 
within the field-of-view of the system under test.

The source can be used to back illuminate a printed or 
etched image such as photographic film for image  digitiza-
tion or resolution targets for MTF testing. Radiance unifor-
mity to within 1%-2% is ensured by using one of the three 
designs previously illustrated.

It is sometimes desired to use the sphere source for test-
ing a non-imaging device such as a CCD or similar array 
detector. In this case the desired effect is uniform irradiance. 
The device under test is often placed coaxial with, but at 
some distance away from the port of the integrating sphere 
source. When used in this way, the two important quantities 
to be determined are the axial irradiance at the center of the 
object as well as the irradiance at the off-axis edge.

3.3.1 Modifying the Source radiance

If it is required to either modify the spectral radiance or 
provide greater adjustability in radiance level, then the lamp 
must be placed externally to another port opening. 

The incident radiant flux is modified by the efficiency of the 
optics used. The centrally located baffle is recommended. 
Direct illumination through a side port would create areas 
of increased radiance. The field of view into the integrating 
sphere should be confined to the baffle. The sphere surface 
surrounding the baffle tends to be more brightly illuminated. 
If an optical filter is used to shape the spectral radiance, 
care should be taken to ensure that the focused light from 
the reflector does not damage the filter.

When the field-of-view must be wider than the baffle will 
permit, a diffuse input at an entrance port opening adjacent 
to the viewing port can be provided by an auxiliary integrat-
ing sphere.

In this case, the distance between spheres should be mini-
mized or the incident illumination becomes more directional 
than diffuse. The system in Figure 29 is more efficient 
than the auxiliary sphere design for a single lamp. Multiple 
auxiliary sphere inputs can be considered to increase the 
radiance of the larger sphere. FIGURE 32

FIGURE 31

FIGURE 30

FIGURE 29
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In Figure 32, the axial illuminance, E
o
 is given by:

Even for a perfectly Lambertian, perfectly uniform circular 
source, the uniformity of the irradiance across a plane object 
at a finite distance will vary with the off-axis angle f. The 
uniformity fall off is given in Table 1 where both the distance 
and the dimension of the object are expressed as multiples 
of the sphere port diameter, x/D and d/D respectively. Uni-
formity is defined as the ratio of the irradiance at the edge of 
the object to the axial irradiance, Ee/Eo.

Examination of Table 1 reveals that the uniformity is 100% 
at the plane of the port. It decreases as the object is moved 
away from the port for a short distance and improves as the 
distance becomes sufficiently long. This phenomenon can 
be illustrated graphically as shown in Figure 33. 

For small values of both q and f (<10°), the irradiance at the 
edge is given by the commonly used cos4f law of
illumination where:

In the examples illustrated Sfor a source diameter equal to 
or larger than the object, the cos4f law predicts the edge ir-
radiance to within  1% for source to object distances at least 
two times larger than the source diameter. At this distance, 
the uniformity is within 10%, however, the irradiance is less 
than 5% of the value at the plane of the
port.

It is important to note that Table 1 and Figure 33 display 
calculated theoretical values of uniformity for the ideal 
perfectly Lambertian source. Laboratory measurements of 
real integrating sphere sources correlate extremely well with 
these predicted values. Therefore, the data provided can be 
used as design guidelines in choosing the correct uniform 
source for a particular application.

FIGURE 33

TABLE 1

EQ. 33

EQ. 32
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gUIDe to optICal UnItS

photoMetrIC QUantItIeS anD UnItS

Quantity    Symbol  Units     abbreviations
Luminous energy    Q

v
   Lumen•second = talbot   lm•s = talbot

Luminous density   U
v
   Lumen•second/m3   lm•s/m3

Luminous flux    F
v
   Lumen     lm

Luminous efficacy   K   lumen/watt    lm W–1

Luminous exitance   M
v
   lumen/m2    lm m–2

Luminance (brightness)   L
v
   candela/m2    cd/m2

      candela/p ft2 = footlambert  cd/p ft2 = fL
      candela/p cm2 = lambert   cd/p cm2 = L
Luminous intensity   I

v
   candela cd    (lm sr–1)

Illuminance    E
v
  lumen/m2 = lux    lm/m2 = lx

      lumen/ft2 = footcandle   lm/ft2 = fc

raDIoMetrIC QUantItIeS anD UnItS

Quantity    Symbol   Units     abbreviations
Radiant energy    Q   joule = watt–second   J = W•s
Radiant energy density   U   joule/m3     J/m3

Radiant flux (power)   F, P   watts = joule/second   W = J/s
Radiant exitance    M   watts/m2    W/m2

Radiance    L   watts/m2•steradian   W/m2•sr
Radiant intensity    I   watts/steradian    W/sr
Irradiance    E   watts/m2    W/m2

SpeCtral reSponSe oF the norMal hUMan eye WIth lUMInoUS to raDIoMetrIC ConVerSIon

 Wavelength  CIe photopic  photopic   Wavelength  CIe photopic  photopic
 (nm)   luminous  lumen/Watt   (nm)   luminous  lumen/Watt
   efficiency  Conversion     efficiency  Conversion
   Coefficient  Factor      Coefficient  Factor

 390   0.0001   0.13    570   0.9520   649.0
 400   0.0004   0.27    580   0.8700   593.0
 410   0.0012   0.82    590   0.7570   516.0
 420   0.0040   2.73    600   0.6310   430.0
 430   0.0116   7.91    610   0.5030   343.0
 440   0.0230   15.7    620   0.3810   260.0
 450   0.0380   25.9    630   0.2650   181.0
 460   0.0600   40.9    640   0.1750   119.0
 470   0.0910   62.1    650   0.1070   73.0
 480   0.1390   94.8    660   0.0610   41.4
 490   0.2080   142.0    670   0.0320   21.8
 500   0.3230   220.0    680   0.0170   11.6
 510   0.5030   343.0    690   0.0082   5.59
 520   0.7100   484.0    700   0.0041   2.78
 530   0.8620   588.0    710   0.0021   1.43
 540   0.9540   650.0    720   0.0010   0.716
 550   0.9950   679.0    730   0.0005   0.355
 555   1.0000   683.0    740   0.0003   0.170
 560   0.9950   679.0    750   0.0001   0.820
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