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Abstract

This document describes the use of a randomness
extractor to post-process the raw random bits gen-
erated by the Quantis random number generator.
In particular, we detail the implementation of the
extractor function as well as the choice of the nec-
essary parameters. The latter depend on the qual-
ity of the raw random bits, which is quantified in
terms of the entropy per bit. We propose a method
to obtain an estimate for this entropy.

1 The extractor

1.1 Extractor design

The basic idea of the extractor is to compute k
output bits yi with high randomness from n > k
input bits xj with less randomness. Assuming that
each bit of the input sequence has entropy s (s = 1
for perfect randomness), the probability that the
extractor output will deviate from a perfectly uni-
form k-bit string will be strictly bounded by

"hash = 2�(sn�k)/2 (1)

(see Theorem 1 of Appendix A.4). The value "hash
can therefore be seen as a measure for the quality
of the random bits output by the extractor. As
outlined in Appendix A.1, the quantity "hash has
a direct operational interpretation: it can be seen
as the maximum probability by which a deviation
from a perfectly random sequence can be noticed.
While "hash can be made arbitrarily small, a value
of "hash = 0 is generally unachievable. Our aim
is to keep "hash below 2�100 or 10�30, implying
that even using millions of devices one will not see

⇤This document has been edited by IDQ to reflect the
settings actually implemented in the Quantis software pack-
age.

any deviation from perfect uniform randomness in
a time longer than the age of the universe. The
value of "hash could even be lowered further (e.g.,
by reducing the size of k, see below) if needed.

The extractor is a simple bit-matrix-vector mul-
tiplication with a random matrix m (also called
seed)

yi =
nX

j=1

mijxj (2)

performed modulo 2. Multiplication of bits is eas-
iest implemented by a bitwise AND operation, ad-
ditions by a bitwise exclusive OR, and sums by ef-
ficient bit count algorithms.

1.2 Choice of parameters n and k

When choosing n and k one has to keep in mind
two conflicting requirements:

• Keeping the bound for failure probability "hash
fixed, the e�ciency (in terms of the number
of generated bits per input bit), k/n = s �
2 log2(1/"hash)/n, can be raised by increasing
n.

• The computational complexity for the matrix-
vector multiplication is O(nk), and hence O(n)
operations need to be performed per generated
random bit.

After study of di↵erent values for n, we find
that, n = 1024 or n = 2048 are good choices for
the Quantis and with the implementation of the
randomness extractor in Quantis software pack-
age. These values gives a good balance between
extractor e�ciency and computational power re-
quirement. Using n = 1024 and k = 768 one loses
25% of the bits, while with n = 2048 and k = 1792
one loses only 12.5%. Either is much better than
the 75% loss using von Neumann de-biasing, which
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additionally does not eliminate correlations. Thus,
from each block of 1024 or 2048 bits the extractor
generates 768 or 1792 bits of provably good random
numbers.
To keep "hash < 2�100 one should choose k <

sn � 200. The above choices are thus acceptable
as long as for a given device the entropy per raw
bit satisfies s > 0.946 for n = 1024 or s > 0.973
for n = 2048.1 The entropy of raw sequence gener-
ated by Quantis is guaranteed to be always above
this value, thanks to continuous monitoring of the
performance of the device.
Others values for n and k can be chosen, but

we must use multiples of 64 for k for performance
reasons.

1.3 Generating the random matrix

The quality of the random bit matrix m is crucial
for the extractor to work. Fortunately, it needs to
be determined only once and can be reused for all
devices. To simplify the substitution of the random
bit matrix by the user, it is hard-coded in a file
delivered within the Quantis software package. For
the two choices above we need 768 kbits or 3584
kbits respectively.
To generate these random bits in practice, a

safe (but costly) method is to generate each of the
bits by adding (modulo 2) r (weakly) random bits
from r mutually independent sources. According
to Lemma 4 in Appendix A.3, the resulting bits
can be made arbitrarily close to uniform by choos-
ing r su�ciently large. (The distance from perfect
uniform bits is exponentially small in r.)
Ideally, the r individual sources used in the de-

scribed procedure to generate the matrix m should
be obtained from di↵erent sources. In addition, we
recommend to take the following precautions:

• take only bits separated by times much longer
than the autocorrelation time (we recommend
a distance of 100 to 1000 between bits);

• use von Neumann de-biasing.

1The required bound on the entropy s is slightly larger
for the case n = 2048 because of the smaller loss of only
12.5%. If one is ready to tolerate a larger loss (25%), one
may choose k = 1536, in which case it is su�cient to have
s > 0.848.

In the Quantis software package, the random bit
matrix has been generated from multiple Quantis
devices.

2 Estimating the entropy

As already indicated above, the quality "hash of the
final bits depends on the entropy s per bit of the
raw randomness generated by the device. In gen-
eral, the relevant entropy measure in this context is
the min-entropy Hmin. The min-entropy is closely
related to the collision entropy H2 (see Lemma 3
in Appendix A.2 for details). For the particular ex-
tractors we use here (based on two-universal hash-
ing), slightly tighter bounds can be obtained by di-
rect use of the collision entropy. (For other extrac-
tor constructions, e.g., Trevisan’s extractor [Tre01],
it is however necessary to use the min-entropy.)

In this section, a quick lower bound that can be
used to obtain a rough estimate for the entropy
is given. This bound depends on the bias of the
individual bits only. We will then discuss a more
elaborate method that can be used to get a better
(higher) bound by running additional tests on a
device. Besides the generally better bound, a main
advantage of this method is that it relies on weaker
assumptions, as discussed in Appendix A.5.

2.1 Rough bound for the min-
entropy based on the bias

First a quick way to estimate a lower bound for
H2 is given, incorporating both the bias and auto-
correlations of an imperfect source of random bits
Xi. The bias b measures the deviation of the dis-
tribution of each bit Xi from uniform, i.e., the val-
ues 0 and 1 are taken with probability 1/2± b. In
the following we assume that the bias b has been
measured with a statistical error �.2 Then, to be
on the safe side we choose the probabilities to be
p0 = 1/2�b�9��0.001 and p1 = 1/2+b+9�+0.001
The term 9� makes sure that the bias estimate has
an error of less than 10�30, and the term 0.001 is a
generous bound on the correlations. With these we
can estimate the entropy s = H2(Xi) of each bit

2If the bias is determined from N measurements, then
the error is � ⇡ 1/(2

p
N).
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produced by the source as

s & � log2(p
2
0 + p21)

= � log2(1/2 + 2(b+ 9� + 0.001)2).

2.2 Accurate determination of the
min-entropy

To determine the min-entropy we have to consider
the asymptotic entropy gain when adding another
bit to a bit string C = (X1, . . . , Xm) of m bits, and
thus look at the di↵erence of the collision entropy
of bit strings of lengths m and m+ 1:3

sm := H2(X1, . . . Xm+1)�H2(X1, . . . , Xm) (3)

for large values of m, i.e., s = limm!1 sm.
The collision entropy H2(X1, . . . Xm) of bit

strings of length m is estimated by recording nor-
malized histograms h(m)(c), counting how often
each possible bit string c = (x1, . . . , xm) ap-
pears. After normalizing so that

P
c h

(m)(c) = 1,
H2(X1, . . . , Xm) is estimated as

H2(X1, . . . , Xm) ⇡ � log2
X

c

h(m)(c)2 . (4)

To obtain s we thus record histograms h(m) for
bit strings of the longest length m to be consid-
ered. In our tests we used bit strings of length
up to m = 16, but found that for the current
Quantis device m = 8 seems su�cient. Longer
m requires exponentially more memory and sam-
pling time. From that histogram, the histograms
for shorter bit strings can be obtained by partial
sums:

h(m�1)((x1, . . . , xm�1)) =
1X

xm=0

h(m)((x1, . . . , xm)).

(5)
One can then calculate and plot sm as a function
of m, check for convergence and obtain the limiting
value s . We have observed very fast convergence,
and for practical purposes it is su�cient to estimate
s by sm for the largest m considered.
To obtain error estimates this procedure should

be repeated several times and the mean value s and

3We use here the collision entropy to simplify the pre-
sentation. To derive rigorous statements, it is advantageous
to use the smooth collision entropy, as briefly explained in
Appendix A.5.

statistical error �s estimated by standard statisti-
cal methods. The final estimate for s needs to take
into account these statistical errors: the probability
that the true entropy is below our estimate needs
to be smaller than the bound on the failure prob-
ability "hash that we tolerate. To achieve this we
use

s = s� ↵�s, (6)

where the value ↵ is chosen such that the comple-
mentary error function erfc(↵) < ".

2.3 Calculating autocorrelations

The histogram h(m) can also be used to calculate
the autocorrelation function

C(t) = hxixi+ti � hxiihxi+ti (7)

for distances t  m� 1. To do so we calculate

xi =
X

c=(x1,...,xm)

xih
(m)(c) (8)

C(t) ⇡
X

c

1

t

m�tX

i=1

h
(xixi+t � xi xi+t)h

(m)(c)
i
.

Statistical errors on C(t) are calculated in the stan-
dard way, or preferably by a jackknife or bootstrap
method to obtain the smallest possible reliable er-
rors.

A Appendix

A.1 Statistical distance

Definition 1. The statistical distance between two
probability distributions PX and PX0 with the same
alphabet is defined as

�(PX , PX0) :=
1

2
kPX � PX0k1 .

.

Proof. A proof of this statement is given in [RK05]
(see Lemma 1).

The statistical distance has an operational inter-
pretation in terms of probabilities, as asserted by
the following lemma.
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Lemma 1. Let PX and PX0
be two probability dis-

tributions with distance " = �(PX , PX0). Then

there exists a joint distribution PXX0
such that

Pr[X 6= X 0]  " .

In other words, if two probability distributions
X and X 0 are "-close, we may think of a common
random experiment where the values X and X 0 co-
incide except with probability ". one of the practi-
cally relevant implications of this is formalized by
the following simple lemma. It shows that if an ap-
plication (e.g., a simulation algorithm or a crypto-
graphic scheme) is proved to work well with perfect
random bits X, then it can also be used safely with
bits X 0 whose distribution is not exactly uniform.

Lemma 2. Let ⇧ be a stochastic process that takes

as input a random value X and may fail with a

probability pfail(Pr(⇧(X)). If the input X is re-

placed by X 0
then the failure probability can in-

crease by at most " := �(PX , PX0), i.e.,

pfail(⇧(X 0))  pfail(⇧(X)) + " .

Proof. We may describe the stochastic process as a
function f which takes as input X as well as some
additional randomness R, and outputs either “fail”
or “success”. Obviously, the outputs f(X,R) and
f(X 0, R) can only deviate ifX 6= X 0. Since, accord-
ing to Lemma 1, the probability that this happens
is bounded by ", the assertion follows.

A.2 Definitions of entropies and ba-
sic properties

Definition 2. The min-entropy Hmin and the col-

lision entropy H2 of a random variable X with dis-
tribution PX are defined by

Hmin(X) = � log2 kPXk1
H2(X) = � log2 kPXk22 .

Definition 3. For any µ � 0, the smooth min-

entropy Hµ
min and the smooth collision entropy Hµ

2

of a random variable X are defined by

Hµ
min(X) = max

PX02Bµ(PX)
Hmin(X

0)

Hµ
2 (X) = max

PX02Bµ(PX)
H2(X

0) .

where Bµ(PX) is the set of all distributions PX0

which have at most distance4 µ from PX .

The two entropy measures defined above are es-
sentially equivalent. This means that any estimate
for the (smooth) min-entropy is a good estimate for
the collision entropy, and vice versa.

Lemma 3. For any µ � 0 and µ0 > 0,

Hµ
min(X)  Hµ

2 (X)  Hµ+µ0

min (X) + log2
1

µ0 .

Proof. The first inequality follows from the general
inequality kPXk1 � kPXk22 (which holds for nor-
malized PX), and the second is a special case of
Lemma I.3 of [RW04].

A.3 XOR of independent sources

The following lemma asserts that good randomness
can be obtained by combining bits generated by
a number of mutually independent weak random
sources. While this method is costly and slow, it
may be used for generating the initial random seed
(i.e., the matrix m in the construction described in
Sections 1.1; see also Section 1.3), which only needs
to be determined once.

Lemma 4. Let X1, . . . Xr be r independent random
bits such that, for some b > 0,

�(Xi, U)  b 8i .

Then the bit X =
P

i Xi mod 2 satisfies

�(X,U)  1

2
(2b)r .

Proof. A simple calculation shows that, for two in-
dependent bits X1 and X2 with bi = �(Xi, U), and
with X = X1 +X2 mod 2,

�(X,U) = 2b1b2 .

The claim then follows by recursive application of
this rule.

4The recent literature on smooth entropies uses the puri-
fied distance instead of the statistical distance. The purified
distance is a more natural choice in the context of quantum
information. However, since the results reported here are
purely classical, it is more convenient and technically easier
to use the statistical distance.
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A.4 Randomness extraction by two-
universal hashing

Definition 4. A family {fs}s2S of functions with
codomain U is called two-universal if for any dis-
tinct inputs x 6= x0

⌦
�fs(x),fs(x0)

↵
s
 1

|U| ,

where h·is denotes the expectation value over s cho-
sen uniformly at random from the set S

In other words, for any fixed pair of distinct in-
puts, the collision probability for a function chosen
at random from a two-universal family is low. An
explicit construction of a family of functions with
this property is given in Section 1.1, and further
constructions can be found in [CW79] and [WC81].

Theorem 1. For any random variable X with al-

phabet X , for any two-universal family {fs}s2S of

functions from X to {0, 1}k, and for S distributed

uniformly (over S) and independently of X,

�
�
PfS(X)S , PU ⇥ PS

�
 " := 2�

1
2 (H2(X)�k) ,

where PU denotes the uniform distribution over U .

Proof. First versions of this theorem have been
proved in [BBR88], [ILL89], and [BBCM95]. The
version stated here (in terms of statistical distance
and collision entropy) can be obtained as the clas-
sical special case of Theorem 5.5.1 of [Ren05].

Corollary 1. Theorem 1 remains valid if " is re-

placed by

" := min
µ

2�
1
2 (H

µ
2 (X)�k) + µ .

Proof. For any µ, let X 0 be a random variable with
�(PX , PX0)  µ such thatH2(X 0) = Hµ

2 (X). Then,
by Theorem 1,

�
�
PfS(X0)S , PU ⇥ PS

�
 2�

1
2 (H2(X

0)�k)

= 2�
1
2 (H

µ
2 (X)�k) .

The assertion then follows from

�(PfS(X)S , PfS(X0)S)  �(PX , PX0)  µ

and the triangle inequality.

Remark 1. The distance on the left hand side of

Theorem 1 can be rewritten as

�
�
PfS(X)S , PU ⇥ PS

�
=

⌦
�(Pfs(X), PU )

↵
s

where h·is denotes the expectation value over s cho-

sen uniformly at random from the set S.

Since these results are expressed using the sta-
tistical distance, it is easy to interpret them opera-
tionally, according to the discussion of Section A.1.
In particular, together with Lemma 1, the above
remark implies that (on average over the choices of
s) there exists a uniformly distributed random vari-
able U such that the function output fs(X) is iden-
tical to U except with probability ". In other words,
" is the maximum probability by which fs(X) de-
viates from a uniformly chosen value.

A.5 Technical statement of result
and assumptions

Combining the facts outlined above, we obtain the
following statement. Consider the extractor spec-
ified in Section 1.1, which takes as input an n-bit
string and outputs a k-bit string, and assume that
the following conditions are satisfied for appropri-
ately chosen parameters "seed, "stat, "hash � 0:

• The matrix m used by the constructor is cho-
sen using a sequence of random bits whose
joint distribution has distance at most "seed
from a perfectly uniform distribution. We re-
fer to Section 1.3 for a discussion of how this
can be achieved using a su�ciently large num-
ber of mutually independent random number
generators.

• The smooth collision entropy of the input bits,
H"stat

2 (X1 · · ·Xn), is lower bounded by sn,
with

s :=
1

n

�
k + 2 log2(1/"hash)

�
.

This is the case whenever

min
m

sm � s (9)

holds for

sm := H"stat
2 (X1, . . . Xm+1)�H"stat

2 (X1, . . . , Xm) .
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Condition (9) can be established using statis-
tical methods (cf. Section 2.2), with a reliabil-
ity bound of "stat for the statistical estimate.
(Note that an error probability of µ in the esti-
mate for the collision entropy H2 corresponds
to estimating the smooth collision entropy Hµ

2 .
This explains why we use this entropy measure
here.)

Under these conditions, the probability that the
output string deviates from a perfectly uniform k-
bit string is upper bounded by " = "seed + "stat +
"hash.
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